a752c7ab
elopes
add first test an...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/*
* Copyright (C) 2016 MUTEX NZ Ltd.
* Copyright (C) 2015 Loci Controls Inc.
*
* This file is subject to the terms and conditions of the GNU Lesser
* General Public License v2.1. See the file LICENSE in the top level
* directory for more details.
*
*/
/**
* @ingroup cpu_cc2538
* @{
*
* @file
* @brief Getter and setter functions for the cc2538_rf driver
*
* @author Aaron Sowry <aaron@mutex.nz>
* @author Ian Martin <ian@locicontrols.com>
*
* @}
*/
#include "cc2538_rf.h"
#define ENABLE_DEBUG (0)
#include "debug.h"
/* static const __flash uint8_t? */
static const uint8_t power_lut[NUM_POWER_LEVELS] = {
0, /**< -24 dBm */
7, /**< -23 dBm */
15, /**< -22 dBm */
22, /**< -21 dBm */
29, /**< -20 dBm */
37, /**< -19 dBm */
44, /**< -18 dBm */
51, /**< -17 dBm */
59, /**< -16 dBm */
66, /**< -15 dBm */
77, /**< -14 dBm */
88, /**< -13 dBm */
93, /**< -12 dBm */
98, /**< -11 dBm */
106, /**< -10 dBm */
114, /**< -9 dBm */
125, /**< -8 dBm */
136, /**< -7 dBm */
141, /**< -6 dBm */
145, /**< -5 dBm */
153, /**< -4 dBm */
161, /**< -3 dBm */
169, /**< -2 dBm */
176, /**< -1 dBm */
182, /**< 0 dBm */
197, /**< 1 dBm */
205, /**< 2 dBm */
213, /**< 3 dBm */
225, /**< 4 dBm */
237, /**< 5 dBm */
246, /**< 6 dBm */
255, /**< 7 dBm */
};
uint64_t cc2538_get_addr_long(void)
{
uint64_t addr = RFCORE_FFSM_EXT_ADDR0;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR1;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR2;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR3;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR4;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR5;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR6;
addr <<= 8;
addr |= RFCORE_FFSM_EXT_ADDR7;
return addr;
}
uint16_t cc2538_get_addr_short(void)
{
return (RFCORE_FFSM_SHORT_ADDR0 << 8) | RFCORE_FFSM_SHORT_ADDR1;
}
unsigned int cc2538_get_chan(void)
{
return IEEE802154_FREQ2CHAN(CC2538_MIN_FREQ + RFCORE_XREG_FREQCTRL);
}
uint64_t cc2538_get_eui64_primary(void)
{
/*
* The primary EUI-64 seems to be written to memory in a non-sequential
* byte order, with both 4-byte halves of the address flipped.
*/
uint64_t eui64 = ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[4];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[5];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[6];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[7];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[0];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[1];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[2];
eui64 <<= 8;
eui64 |= ((uint8_t*)CC2538_EUI64_LOCATION_PRI)[3];
return eui64;
}
bool cc2538_get_monitor(void)
{
return NOT(RFCORE->XREG_FRMFILT0bits.FRAME_FILTER_EN);
}
uint16_t cc2538_get_pan(void)
{
return (RFCORE_FFSM_PAN_ID1 << 8) | RFCORE_FFSM_PAN_ID0;
}
int cc2538_get_tx_power(void)
{
int index;
int best_index = 0;
int best_delta = INT_MAX;
int txpower;
txpower = RFCORE_XREG_TXPOWER & 0xff;
for (index = 0; index < NUM_POWER_LEVELS; index++) {
int delta = ABS_DIFF(power_lut[index], txpower);
if (delta < best_delta) {
best_delta = delta;
best_index = index;
}
}
return OUTPUT_POWER_MIN + best_index;
}
void cc2538_set_addr_long(uint64_t addr)
{
RFCORE_FFSM_EXT_ADDR0 = addr >> (7 * 8);
RFCORE_FFSM_EXT_ADDR1 = addr >> (6 * 8);
RFCORE_FFSM_EXT_ADDR2 = addr >> (5 * 8);
RFCORE_FFSM_EXT_ADDR3 = addr >> (4 * 8);
RFCORE_FFSM_EXT_ADDR4 = addr >> (3 * 8);
RFCORE_FFSM_EXT_ADDR5 = addr >> (2 * 8);
RFCORE_FFSM_EXT_ADDR6 = addr >> (1 * 8);
RFCORE_FFSM_EXT_ADDR7 = addr >> (0 * 8);
}
void cc2538_set_addr_short(uint16_t addr)
{
RFCORE_FFSM_SHORT_ADDR1 = addr;
RFCORE_FFSM_SHORT_ADDR0 = addr >> 8;
}
void cc2538_set_chan(unsigned int chan)
{
DEBUG("%s(%u): Setting channel to ", __FUNCTION__, chan);
if (chan < IEEE802154_CHANNEL_MIN) {
chan = IEEE802154_CHANNEL_MIN;
}
else if (chan > IEEE802154_CHANNEL_MAX) {
chan = IEEE802154_CHANNEL_MAX;
}
DEBUG("%i (range %i-%i)\n", chan, IEEE802154_CHANNEL_MIN,
IEEE802154_CHANNEL_MAX);
cc2538_set_freq(IEEE802154_CHAN2FREQ(chan));
}
void cc2538_set_freq(unsigned int MHz)
{
DEBUG("%s(%u): Setting frequency to ", __FUNCTION__, MHz);
if (MHz < IEEE802154_MIN_FREQ) {
MHz = IEEE802154_MIN_FREQ;
}
else if (MHz > IEEE802154_MAX_FREQ) {
MHz = IEEE802154_MAX_FREQ;
}
DEBUG("%i (range %i-%i)\n", MHz, IEEE802154_MIN_FREQ, IEEE802154_MAX_FREQ);
RFCORE_XREG_FREQCTRL = MHz - CC2538_MIN_FREQ;
}
void cc2538_set_monitor(bool mode)
{
RFCORE->XREG_FRMFILT0bits.FRAME_FILTER_EN = NOT(mode);
}
void cc2538_set_state(cc2538_rf_t *dev, netopt_state_t state)
{
switch (state) {
case NETOPT_STATE_OFF:
case NETOPT_STATE_SLEEP:
cc2538_off();
dev->state = state;
break;
case NETOPT_STATE_RX:
case NETOPT_STATE_IDLE:
if (!cc2538_is_on()) {
cc2538_on();
RFCORE_WAIT_UNTIL(RFCORE->XREG_FSMSTAT0bits.FSM_FFCTRL_STATE > FSM_STATE_RX_CALIBRATION);
}
dev->state = state;
break;
case NETOPT_STATE_TX:
dev->state = NETOPT_STATE_IDLE;
break;
case NETOPT_STATE_RESET:
cc2538_off();
cc2538_on();
RFCORE_WAIT_UNTIL(RFCORE->XREG_FSMSTAT0bits.FSM_FFCTRL_STATE > FSM_STATE_RX_CALIBRATION);
dev->state = NETOPT_STATE_IDLE;
break;
default:
break;
}
}
void cc2538_set_pan(uint16_t pan)
{
RFCORE_FFSM_PAN_ID0 = pan;
RFCORE_FFSM_PAN_ID1 = pan >> 8;
}
void cc2538_set_tx_power(int dBm)
{
DEBUG("%s(%i): Setting TX power to ", __FUNCTION__, dBm);
if (dBm < OUTPUT_POWER_MIN) {
dBm = OUTPUT_POWER_MIN;
}
else if (dBm > OUTPUT_POWER_MAX) {
dBm = OUTPUT_POWER_MAX;
}
DEBUG("%idBm (range %i-%i dBm)\n", dBm, OUTPUT_POWER_MIN, OUTPUT_POWER_MAX);
RFCORE_XREG_TXPOWER = power_lut[dBm - OUTPUT_POWER_MIN];
}
|