Blame view

RIOT/cpu/x86/x86_memory.c 15 KB
a752c7ab   elopes   add first test an...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
  /*
   * Copyright (C) 2014  René Kijewski  <rene.kijewski@fu-berlin.de>
   *
   * This library is free software; you can redistribute it and/or
   * modify it under the terms of the GNU Lesser General Public
   * License as published by the Free Software Foundation; either
   * version 2.1 of the License, or (at your option) any later version.
   *
   * This library is distributed in the hope that it will be useful,
   * but WITHOUT ANY WARRANTY; without even the implied warranty of
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   * Lesser General Public License for more details.
   *
   * You should have received a copy of the GNU Lesser General Public
   * License along with this library; if not, write to the Free Software
   * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
   */
  
  /**
   * @ingroup     x86
   * @{
   *
   * @file
   * @brief       Virtual memory management.
   *
   * @author      René Kijewski <rene.kijewski@fu-berlin.de>
   *
   * @}
   */
  
  #include "x86_kernel_memory.h"
  #include "x86_interrupts.h"
  #include "x86_memory.h"
  #include "x86_registers.h"
  #include "cpu.h"
  #include "irq.h"
  #include "tlsf-malloc.h"
  
  #include <malloc.h>
  #include <stdint.h>
  #include <stdio.h>
  #include <string.h>
  #include <unistd.h>
  
  /* Compare Figure 44 (p. 99) of "Intel® Quark SoC X1000 Core Developer’s Manual" */
  #define PT_CR3_BITS  (0)
  #define PT_PDPT_BITS (PT_P)
  #define PT_PD_BITS  (PT_P | PT_RW | PT_US)
  
  #ifndef DEBUG_READ_BEFORE_WRITE
  #   define PT_HEAP_BITS (PT_P | PT_RW | PT_US | pt_xd)
  #else
  #   define PT_HEAP_BITS (PT_HEAP_BIT | PT_RW | PT_US | pt_xd)
  #endif
  
  static uint64_t pt_xd = PT_XD;
  
  typedef union page {
      char content[4096];
      uint64_t next_page;
      uint64_t indices[512];
  } __attribute__((aligned(0x1000))) page_t;
  
  static volatile page_t TEMP_PAGE;
  #define TEMP_PAGE_PT (((uintptr_t) &TEMP_PAGE / 0x1000) / 512)
  #define TEMP_PAGE_PTE  (((uintptr_t) &TEMP_PAGE / 0x1000) % 512)
  
  void x86_init_gdt(void)
  {
      static const struct gdt_entry gdt_entries[3] = {
          [0x0000 / 8] = {
              .limit_0_15            = 0,
              .base_0_15             = 0,
              .base_16_23            = 0,
              .access_byte           = 0,
              .limit_16_19_and_flags = 0,
              .base_24_31            = 0,
          },
          /* cppcheck-suppress duplicateExpression
           * it's for consistent look & feel */
          [0x0008 / 8] = {
              .limit_0_15            = 0xFFFF,
              .base_0_15             = 0,
              .base_16_23            = 0,
              .access_byte           = GDT_AB_EX | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
              .limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
              .base_24_31            = 0,
          },
          [0x0010 / 8] = {
              .limit_0_15            = 0xFFFF,
              .base_0_15             = 0,
              .base_16_23            = 0,
              .access_byte           = GDT_AB_RW | GDT_AB_S | GDT_AB_RING_0 | GDT_AB_PR,
              .limit_16_19_and_flags = 0xF | GDT_FLAG_SZ | GDT_FLAG_GR,
              .base_24_31            = 0,
          },
      };
      static const struct gdtr_t gdt = {
          .size_minus_one = sizeof gdt_entries - 1,
          .offset = (unsigned long) &gdt_entries[0],
      };
  
      __asm__ volatile ("" :: "a"(0x0010));
  
      __asm__ volatile ("lgdt %0" :: "m"(gdt));
      __asm__ volatile ("ljmp $0x0008, $1f\n"
                    "1:");
  
      __asm__ volatile ("mov %ax, %ds");
      __asm__ volatile ("mov %ax, %es");
      __asm__ volatile ("mov %ax, %fs");
      __asm__ volatile ("mov %ax, %gs");
      __asm__ volatile ("mov %ax, %ss");
  }
  
  /* Addresses in PDPT, PD, and PT are linear addresses. */
  /* TEMP_PAGE is used to to access these pages. */
  static pae_page_table_t static_pts[X86_NUM_STATIC_PT];
  static pae_page_directory_t static_pds[X86_NUM_STATIC_PD];
  static pae_page_directory_pointer_table_t pdpt;
  
  static void init_elf_static_section(uint64_t bits, void *start_, void *end_)
  {
      unsigned long start = ((unsigned long) start_) / 0x1000;
      unsigned long end = (((unsigned long) end_) + 0x1000 - 1) / 0x1000;
      for (unsigned i = start; i < end; ++i) {
          unsigned pt_num = i / 512;
          unsigned pte_num = i % 512;
          static_pts[pt_num][pte_num] = (i * 0x1000) | PT_P | PT_G | bits;
      }
  }
  
  static void check_requirements(void)
  {
      uint64_t cpuid = cpuid_caps();
      if ((cpuid & CPUID_PAE) == 0) {
          puts("Your CPU does not support PAE! Halting.");
          x86_hlt();
      }
      if ((cpuid & CPUID_PGE) == 0)  {
          puts("Your CPU does not support PGE! Halting.");
          x86_hlt();
      }
      if ((cpuid & CPUID_MSR) == 0) {
          puts("Warning: Your CPU does not support MSR!\n"
               "         Setting PT_XD = 0.");
          pt_xd = 0;
      }
      else {
          /* enable NX bit (if possible) */
          uint64_t efer = msr_read(MSR_EFER);
          efer |= EFER_NXE;
          msr_set(MSR_EFER, efer);
          if (!(msr_read(MSR_EFER) & EFER_NXE)) {
              puts("Warning: Your hardware does not support the NX bit!\n"
                   "         Setting PT_XD = 0.");
              pt_xd = 0;
          }
      }
  }
  
  static void init_pagetable(void)
  {
      /* identity map tables */
      for (unsigned i = 0; i < X86_NUM_STATIC_PD; ++i) {
          pdpt[i] = ((uintptr_t) &static_pds[i]) | PT_PDPT_BITS;
      }
      for (unsigned i = 0; i < X86_NUM_STATIC_PT; ++i) {
          unsigned pd_num = i / 512;
          unsigned pt_num = i % 512;
          static_pds[pd_num][pt_num] = ((uintptr_t) &static_pts[i]) | PT_PD_BITS;
      }
      init_elf_static_section(PT_RW | pt_xd, (void *) 0, (void *) 0x100000);
      init_elf_static_section(PT_US, &_section_text_start, &_section_text_end);
      init_elf_static_section(PT_US | pt_xd, &_section_rodata_start, &_section_rodata_end);
      init_elf_static_section(PT_US | PT_RW | pt_xd, &_section_data_start, &_section_bss_end);
  
      /* activate PAE */
      /* FIXME: add x86_init_cr4() */
      uint32_t cr4 = cr4_read();
      cr4 |= CR4_PAE | CR4_MCE | CR4_PGE | CR4_PCE | CR4_OSXMMEXCPT;
      cr4 &= ~(CR4_VME | CR4_PVI | CR4_TSD | CR4_DE | CR4_PSE | CR4_OSFXSR | CR4_SMEP);
      cr4_write(cr4);
  
      /* load page table */
      cr3_write((uint32_t) &pdpt | PT_CR3_BITS);
  
      /* activate paging */
      uint32_t cr0 = cr0_read();
      cr0 |= CR0_PE | CR0_NE | CR0_WP | CR0_PG;
      cr0 &= ~(CR0_MP | CR0_EM | CR0_TS | CR0_AM | CR0_NW | CR0_CD);
      cr0_write(cr0);
  }
  
  static void set_temp_page(uint64_t addr)
  {
      static_pts[TEMP_PAGE_PT][TEMP_PAGE_PTE] = addr != -1ull ? addr | PT_P | PT_RW | pt_xd : 0;
      __asm__ volatile ("invlpg (%0)" :: "r"(&TEMP_PAGE));
  }
  
  static inline uint64_t min64(uint64_t a, uint64_t b)
  {
      return a <= b ? a : b;
  }
  
  static inline uint64_t max64(uint64_t a, uint64_t b)
  {
      return a >= b ? a : b;
  }
  
  static uint32_t init_free_pages_heap_position = (uintptr_t) &_heap_start;
  
  static uint64_t init_free_pages_sub(uint64_t table, uint64_t bits, unsigned index, uint64_t *start, uint64_t *pos)
  {
      set_temp_page(table);
      if (TEMP_PAGE.indices[index] & PT_P) {
          return TEMP_PAGE.indices[index] & PT_ADDR_MASK;
      }
  
      TEMP_PAGE.indices[index] = *start | bits;
  
      uint64_t result = *start;
      *start += 0x1000;
      *pos = max64(*start, *pos);
      init_free_pages_heap_position += 0x1000;
      return result;
  }
  
  static bool add_pages_to_pool(uint64_t start, uint64_t end)
  {
      start += 0xFFF;
      start &= ~0xFFF;
      end &= ~0xFFF;
  
      start = max64(start, (uintptr_t) &_kernel_memory_end);
      uint64_t pos = start;
  
      uint32_t addr = init_free_pages_heap_position >> 12;
      unsigned pte_i = addr % 512;
      addr >>= 9;
      unsigned pt_i = addr % 512;
      addr >>= 9;
      unsigned pd_i = addr;
  
      if (pd_i >= 4) {
          return false;
      }
  
      while (pos < end) {
          uint64_t table = (uintptr_t) &pdpt;
  
          table = init_free_pages_sub(table, PT_PDPT_BITS, pd_i, &start, &pos);
          if (pos >= end) {
              break;
          }
  
          table = init_free_pages_sub(table, PT_PD_BITS, pt_i, &start, &pos);
          if (pos >= end) {
              break;
          }
  
          set_temp_page(table);
          TEMP_PAGE.indices[pte_i] = pos | PT_HEAP_BITS;
          pos += 0x1000;
  
          if (++pte_i >= 512) {
              pte_i = 0;
              if (++pt_i >= 512) {
                  pt_i = 0;
                  if (++pd_i >= 4) {
                      break;
                  }
              }
          }
      }
  
      if (start < end) {
          cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
          tlsf_add_pool((void *) init_free_pages_heap_position, end - start);
          init_free_pages_heap_position += end - start;
      }
  
      return true;
  }
  
  static void init_free_pages(void)
  {
      printf("Kernel memory: %p - %p\r\n",
             (void *)&_kernel_memory_start, (void *)&_kernel_memory_end);
      printf("  .text:   %p - %p\r\n", (void *)&_section_text_start, (void *)&_section_text_end);
      printf("  .rodata: %p - %p\r\n", (void *)&_section_rodata_start, (void *)&_section_rodata_end);
      printf("  .data:   %p - %p\r\n", (void *)&_section_data_start, (void *)&_section_data_end);
      printf("  .bss:    %p - %p\r\n", (void *)&_section_bss_start, (void *)&_section_bss_end);
      printf("Unmapped memory: %p - %p\r\n", (void *)&_kernel_memory_end, (void *)&_heap_start);
      printf("Heap start: %p\r\n", (void *)&_heap_start);
  
      unsigned long cnt = 0;
      uint64_t start, len;
      while (x86_get_memory_region(&start, &len, &cnt)) {
          uint64_t end = start + len;
          if (!add_pages_to_pool(start, end)) {
              break;
          }
      }
  
      unsigned long free_pages_count = (init_free_pages_heap_position - (uintptr_t) &_heap_start) / 4096;
      float mem_amount = free_pages_count * (4096 / 1024);
      const char *mem_unit = "kB";
      if (mem_amount >= 2 * 1024) {
          mem_amount /= 1024;
          mem_unit = "MB";
      }
      if (mem_amount >= 2 * 1024) {
          mem_amount /= 1024;
          mem_unit = "GB";
      }
      printf("There are %lu free pages (%.3f %s) available for the heap.\n", free_pages_count, mem_amount, mem_unit);
  }
  
  static unsigned handling_pf;
  static void pagefault_handler(uint8_t intr_num, struct x86_pushad *orig_ctx, unsigned long error_code)
  {
      (void) intr_num; /* intr_num == X86_INT_PF */
  
      ++handling_pf;
  
      switch (handling_pf) {
          case 1:
              break; /* first #PF */
  
          case 2: /* pagefault while handing a page fault. */
              puts("A page fault occured while handling a page fault!");
              x86_print_registers(orig_ctx, error_code);
              puts("Halting.");
              /* fall through */
  
          default: /* pagefault while printing #PF message, everything is lost */
              x86_hlt();
      }
  
  #ifdef DEBUG_READ_BEFORE_WRITE
      uint32_t virtual_addr = cr2_read();
      uint64_t pte = x86_get_pte(virtual_addr);
  #endif
  
      if (error_code & PF_EC_I) {
          puts("Page fault while fetching instruction.");
          x86_print_registers(orig_ctx, error_code);
          puts("Halting.");
          x86_hlt();
      }
  #ifdef DEBUG_READ_BEFORE_WRITE
      else if ((pte != NO_PTE) && !(pte & PT_P) && (pte & PT_HEAP_BIT)) {
          /* mark as present */
          TEMP_PAGE.indices[(virtual_addr >> 12) % 512] |= PT_P;
          __asm__ volatile ("invlpg (%0)" :: "r"(virtual_addr));
  
          /* initialize for easier debugging */
          uint32_t *p = (uint32_t *) (virtual_addr & ~0xfff);
          for (unsigned i = 0; i < 0x1000 / 4; ++i) {
              const union {
                  char str_value[4];
                  uint32_t int_value;
              } debug_init = { .str_value = "RIOT" };
              *p++ = debug_init.int_value;
          }
  
          /* print a warning if the page was read before written */
          if (!(error_code & PF_EC_W)) {
              unsigned long *sp = (void *) orig_ctx->sp; /* ip, cs, flags */
              printf("DEBUG: Read before write on heap address 0x%08x (physical: 0x%016llx) at 0x%08lx.\n",
                     virtual_addr, pte & PT_ADDR_MASK, sp[0]);
          }
      }
  #endif
      else if (error_code & PF_EC_P) {
          printf("Page fault: access violation while %s present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
          x86_print_registers(orig_ctx, error_code);
          puts("Halting.");
          x86_hlt();
      }
      else {
          printf("Page fault: access violation while %s non-present page.\n", (error_code & PF_EC_W) ? "writing to" : "reading from");
          x86_print_registers(orig_ctx, error_code);
          puts("Halting.");
          x86_hlt();
      }
  
      --handling_pf;
  }
  
  static void init_pagefault_handler(void)
  {
      x86_interrupt_handler_set(X86_INT_PF, &pagefault_handler);
  }
  
  void x86_init_memory(void)
  {
      check_requirements();
  
      init_pagetable();
      init_pagefault_handler();
      init_free_pages();
  
      puts("Virtual memory initialized");
  }
  
  uint64_t x86_get_pte(uint32_t addr)
  {
      addr >>= 12;
      unsigned pte_i = addr % 512;
      addr >>= 9;
      unsigned pt_i = addr % 512;
      addr >>= 9;
      unsigned pd_i = addr;
  
      if (pdpt[pd_i] & PT_P) {
          set_temp_page(pdpt[pd_i] & PT_ADDR_MASK);
          if (TEMP_PAGE.indices[pt_i] & PT_P) {
              set_temp_page(TEMP_PAGE.indices[pt_i] & PT_ADDR_MASK);
              return TEMP_PAGE.indices[pte_i];
          }
      }
      return NO_PTE;
  }
  
  static void virtual_pages_set_bits(uint32_t virtual_addr, unsigned pages, uint64_t bits)
  {
      while (pages-- > 0) {
          unsigned pte_i = (virtual_addr >> 12) % 512;
  
          uint64_t old_physical_addr = x86_get_pte(virtual_addr) & PT_ADDR_MASK;
          TEMP_PAGE.indices[pte_i] = old_physical_addr | bits;
          __asm__ volatile ("invlpg (%0)" :: "r"(virtual_addr));
  
          virtual_addr += 0x1000;
      }
  }
  
  void *x86_map_physical_pages(uint64_t physical_start, unsigned pages, uint64_t bits)
  {
      if (bits & PT_XD) {
          bits &= ~PT_XD;
          bits |= pt_xd;
      }
  
      /* We use an already set up space, so we are sure that the upper level page tables are allocated. */
      /* We cut out a slice and re-add the physical pages. */
      char *result = memalign(0x1000, pages * 0x1000);
      if (!result) {
          return NULL;
      }
  
      for (unsigned page = 0; page < pages; ++page) {
          uint64_t physical_addr = physical_start + page * 0x1000;
          uint32_t virtual_addr = (uintptr_t) result + page * 0x1000;
          unsigned pte_i = (virtual_addr >> 12) % 512;
  
          uint64_t old_pte = x86_get_pte(virtual_addr);
          TEMP_PAGE.indices[pte_i] = physical_addr | bits;
  
          if (page == 0) {
              uint64_t old_physical_addr = old_pte & PT_ADDR_MASK;
  
              /* FIXME: does this work? Won't work if TLSF joins different buffers. */
              add_pages_to_pool(old_physical_addr, old_physical_addr + 0x1000 * pages);
          }
      }
  
      cr3_write((uint32_t) &pdpt | PT_CR3_BITS); /* flush tlb */
      return result;
  }
  
  void *x86_get_virtual_pages(unsigned pages, uint64_t bits)
  {
      if (bits & PT_XD) {
          bits &= ~PT_XD;
          bits |= pt_xd;
      }
  
      char *result = memalign(0x1000, pages * 0x1000);
      if (!result) {
          return (void *) -1ul;
      }
  
      virtual_pages_set_bits((uintptr_t) result, pages, bits);
      return result;
  }
  
  void x86_release_virtual_pages(uint32_t virtual_start, unsigned pages)
  {
      virtual_pages_set_bits(virtual_start, pages, PT_HEAP_BITS);
      free((void *) virtual_start);
  }