Blame view

RIOT/cpu/stm32f2/periph/i2c.c 17.5 KB
a752c7ab   elopes   add first test an...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
  /*
   * Copyright (C) 2014 FU Berlin
   *
   * This file is subject to the terms and conditions of the GNU Lesser
   * General Public License v2.1. See the file LICENSE in the top level
   * directory for more details.
   */
  
  /**
   * @ingroup     cpu_stm32f2
   * @ingroup     drivers_periph_i2c
   * @{
   *
   * @file
   * @brief       Low-level I2C driver implementation
   *
   * @note This implementation only implements the 7-bit addressing mode.
   *
   * @author      Toon Stegen <toon.stegen@altran.com>
   * @author      Vincent Dupont <vincent@otakeys.com>
   *
   * @}
   */
  
  #include <stdint.h>
  
  #include "cpu.h"
  #include "irq.h"
  #include "mutex.h"
  #include "periph_conf.h"
  #include "periph/i2c.h"
  
  #define ENABLE_DEBUG    (0)
  #include "debug.h"
  
  /* guard file in case no I2C device is defined */
  #if I2C_NUMOF
  
  #define I2C_MAX_LOOP_CNT 10000
  
  /* static function definitions */
  static int _read_bytes(I2C_TypeDef *i2c, uint8_t address, uint8_t *data, int length, uint8_t *err);
  static void _i2c_init(I2C_TypeDef *i2c, int ccr);
  static void _pin_config(GPIO_TypeDef *port_scl, GPIO_TypeDef *port_sda, int pin_scl, int pin_sda);
  static int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t *err);
  static inline void _clear_addr(I2C_TypeDef *dev);
  static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length, uint8_t *err);
  static inline int _stop(I2C_TypeDef *dev, uint8_t *err);
  static inline int _wait_ready(I2C_TypeDef *dev);
  
  /**
   * @brief Array holding one pre-initialized mutex for each I2C device
   */
  static mutex_t locks[] =  {
  #if I2C_0_EN
      [I2C_0] = MUTEX_INIT,
  #endif
  #if I2C_1_EN
      [I2C_1] = MUTEX_INIT,
  #endif
  #if I2C_2_EN
      [I2C_2] = MUTEX_INIT,
  #endif
  #if I2C_3_EN
      [I2C_3] = MUTEX_INIT
  #endif
  };
  
  static uint8_t err_flag[] = {
  #if I2C_0_EN
      [I2C_0] = 0x00,
  #endif
  #if I2C_1_EN
      [I2C_1] = 0x00,
  #endif
  #if I2C_2_EN
      [I2C_2] = 0x00,
  #endif
  #if I2C_3_EN
      [I2C_3] = 0x00
  #endif
  };
  
  int i2c_init_master(i2c_t dev, i2c_speed_t speed)
  {
      I2C_TypeDef *i2c;
      GPIO_TypeDef *port_scl;
      GPIO_TypeDef *port_sda;
      int pin_scl = 0, pin_sda = 0;
      int ccr;
  
      /* read speed configuration */
      switch (speed) {
          case I2C_SPEED_NORMAL:
              ccr = I2C_APBCLK / 200000;
              break;
  
          case I2C_SPEED_FAST:
              ccr = I2C_APBCLK / 800000;
              break;
  
          default:
              return -2;
      }
  
      /* read static device configuration */
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              i2c = I2C_0_DEV;
              port_scl = I2C_0_SCL_PORT;
              pin_scl = I2C_0_SCL_PIN;
              port_sda = I2C_0_SDA_PORT;
              pin_sda = I2C_0_SDA_PIN;
              I2C_0_CLKEN();
              I2C_0_SCL_CLKEN();
              I2C_0_SDA_CLKEN();
              NVIC_SetPriority(I2C_0_ERR_IRQ, I2C_IRQ_PRIO);
              NVIC_EnableIRQ(I2C_0_ERR_IRQ);
              break;
  #endif
  
          default:
              return -1;
      }
  
      /* configure pins */
      _pin_config(port_scl, port_sda, pin_scl, pin_sda);
  
      /* configure device */
      _i2c_init(i2c, ccr);
  
      return 0;
  }
  
  static void _i2c_init(I2C_TypeDef *i2c, int ccr)
  {
      /* disable device and set ACK bit */
      i2c->CR1 = I2C_CR1_ACK;
      /* configure I2C clock */
      i2c->CR2 = (I2C_APBCLK / 1000000) | I2C_CR2_ITERREN;
      i2c->CCR = ccr;
      i2c->TRISE = (I2C_APBCLK / 1000000) + 1;
      /* configure device */
      i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */
      i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */
      /* enable device */
      i2c->CR1 |= I2C_CR1_PE;
  }
  
  static void _pin_config(GPIO_TypeDef *port_scl, GPIO_TypeDef *port_sda, int pin_scl, int pin_sda)
  {
      /* Set GPIOs to AF mode */
      port_scl->MODER &= ~(3 << (2 * pin_scl));
      port_scl->MODER |= (2 << (2 * pin_scl));
      port_sda->MODER &= ~(3 << (2 * pin_sda));
      port_sda->MODER |= (2 << (2 * pin_sda));
  
      /* Set speed high*/
      port_scl->OSPEEDR |= (3 << (2 * pin_scl));
      port_sda->OSPEEDR |= (3 << (2 * pin_sda));
  
      /* Set to push-pull configuration open drain*/
      port_scl->OTYPER |= (1 << pin_scl);
      port_sda->OTYPER |= (1 << pin_sda);
  
      /* Enable pull-up resistors */
      port_scl->PUPDR &= ~(3 << (2 * pin_scl));
      port_sda->PUPDR &= ~(3 << (2 * pin_sda));
      if (I2C_0_SCL_PULLUP) {
          port_scl->PUPDR |= (1 << (2 * pin_scl));
      }
      if (I2C_0_SDA_PULLUP) {
          port_sda->PUPDR |= (1 << (2 * pin_sda));
      }
  
      /* Configure GPIOs to for the I2C alternate function */
      if (pin_scl < 8) {
          port_scl->AFR[0] &= ~(0xf << (4 * pin_scl));
          port_scl->AFR[0] |= (I2C_0_SCL_AF << (4 * pin_scl));
      }
      else {
          port_scl->AFR[1] &= ~(0xf << (4 * (pin_scl - 8)));
          port_scl->AFR[1] |= (I2C_0_SCL_AF << (4 * (pin_scl - 8)));
      }
  
      if (pin_sda < 8) {
          port_sda->AFR[0] &= ~(0xf << (4 * pin_sda));
          port_sda->AFR[0] |= (I2C_0_SDA_AF << (4 * pin_sda));
      }
      else {
          port_sda->AFR[1] &= ~(0xf << (4 * (pin_sda - 8)));
          port_sda->AFR[1] |= (I2C_0_SDA_AF << (4 * (pin_sda - 8)));
      }
  }
  
  int i2c_acquire(i2c_t dev)
  {
      if (dev >= I2C_NUMOF) {
          return -1;
      }
      mutex_lock(&locks[dev]);
      return 0;
  }
  
  int i2c_release(i2c_t dev)
  {
      if (dev >= I2C_NUMOF) {
          return -1;
      }
      mutex_unlock(&locks[dev]);
      return 0;
  }
  
  int i2c_read_byte(i2c_t dev, uint8_t address, void *data)
  {
      return i2c_read_bytes(dev, address, data, 1);
  }
  
  int i2c_read_bytes(i2c_t dev, uint8_t address, void *data, int length)
  {
      I2C_TypeDef *i2c;
  
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              i2c = I2C_0_DEV;
              break;
  #endif
  
          default:
              return -1;
      }
  
      int res = _wait_ready(i2c);
      if (res != 0) {
          return res;
      }
      return _read_bytes(i2c, address, data, length, &err_flag[dev]);
  }
  
  static inline int _wait_ready(I2C_TypeDef *dev)
  {
      /* wait for device to be ready */
      DEBUG("Wait for device to be ready\n");
  
      int cnt = 0;
      while ((dev->SR2 & I2C_SR2_BUSY) && cnt++ < I2C_MAX_LOOP_CNT) {}
      if (cnt == I2C_MAX_LOOP_CNT) {
          return -3;
      }
  
      return 0;
  }
  
  static int _read_bytes(I2C_TypeDef *i2c, uint8_t address, uint8_t *data, int length, uint8_t *err)
  {
      unsigned int state;
      int i = 0;
      int cnt = 0;
      int res;
  
      switch (length) {
          case 1:
              DEBUG("Send Slave address and wait for ADDR == 1\n");
              res = _start(i2c, address, I2C_FLAG_READ, err);
              if (res != 0) {
                  return res;
              }
              if (*err) {
                  return -3;
              }
  
              DEBUG("Set ACK = 0\n");
              i2c->CR1 &= ~(I2C_CR1_ACK);
  
              DEBUG("Clear ADDR and set STOP = 1\n");
              state = irq_disable();
              _clear_addr(i2c);
              i2c->CR1 |= (I2C_CR1_STOP);
              irq_restore(state);
  
              DEBUG("Wait for RXNE == 1\n");
  
              cnt = 0;
              *err = 0;
              while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("Read received data\n");
              *data = i2c->DR;
  
              /* wait until STOP is cleared by hardware */
              cnt = 0;
              *err = 0;
              while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT) {
                  return -3;
              }
  
              /* reset ACK to be able to receive new data */
              i2c->CR1 |= (I2C_CR1_ACK);
              break;
  
          case 2:
              DEBUG("Send Slave address and wait for ADDR == 1\n");
              res = _start(i2c, address, I2C_FLAG_READ, err);
              if (res != 0) {
                  return res;
              }
              if (*err) {
                  return -3;
              }
              DEBUG("Set POS bit\n");
              i2c->CR1 |= (I2C_CR1_POS | I2C_CR1_ACK);
              DEBUG("Crit block: Clear ADDR bit and clear ACK flag\n");
              state = irq_disable();
              _clear_addr(i2c);
              i2c->CR1 &= ~(I2C_CR1_ACK);
              irq_restore(state);
  
              DEBUG("Wait for transfer to be completed\n");
  
              cnt = 0;
              *err = 0;
              while (!(i2c->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("Crit block: set STOP and read first byte\n");
              state = irq_disable();
              i2c->CR1 |= (I2C_CR1_STOP);
              data[0] = i2c->DR;
              irq_restore(state);
  
              DEBUG("read second byte\n");
              data[1] = i2c->DR;
  
              DEBUG("wait for STOP bit to be cleared again\n");
  
              cnt = 0;
              *err = 0;
              while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("reset POS = 0 and ACK = 1\n");
              i2c->CR1 &= ~(I2C_CR1_POS);
              i2c->CR1 |= (I2C_CR1_ACK);
              break;
  
          default:
              DEBUG("Send Slave address and wait for ADDR == 1\n");
              res = _start(i2c, address, I2C_FLAG_READ, err);
              if (res != 0) {
                  return res;
              }
              _clear_addr(i2c);
  
              while (i < (length - 3)) {
                  DEBUG("Wait until byte was received\n");
  
                  cnt = 0;
                  *err = 0;
                  while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
                  if (cnt == I2C_MAX_LOOP_CNT || *err) {
                      return -3;
                  }
  
                  DEBUG("Copy byte from DR\n");
                  data[i++] = i2c->DR;
              }
  
              DEBUG("Reading the last 3 bytes, waiting for BTF flag\n");
  
              cnt = 0;
              *err = 0;
              while (!(i2c->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err));
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("Disable ACK\n");
              i2c->CR1 &= ~(I2C_CR1_ACK);
  
              DEBUG("Crit block: set STOP and read N-2 byte\n");
              state = irq_disable();
              data[i++] = i2c->DR;
              i2c->CR1 |= (I2C_CR1_STOP);
              irq_restore(state);
  
              DEBUG("Read N-1 byte\n");
              data[i++] = i2c->DR;
  
              cnt = 0;
              *err = 0;
              while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("Read last byte\n");
  
              data[i++] = i2c->DR;
  
              DEBUG("wait for STOP bit to be cleared again\n");
  
              cnt = 0;
              *err = 0;
              while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
              if (cnt == I2C_MAX_LOOP_CNT || *err) {
                  return -3;
              }
  
              DEBUG("reset POS = 0 and ACK = 1\n");
              i2c->CR1 &= ~(I2C_CR1_POS);
              i2c->CR1 |= (I2C_CR1_ACK);
      }
  
      return length;
  }
  
  int i2c_read_reg(i2c_t dev, uint8_t address, uint8_t reg, void *data)
  {
      return i2c_read_regs(dev, address, reg, data, 1);
  }
  
  int i2c_read_regs(i2c_t dev, uint8_t address, uint8_t reg, void *data, int length)
  {
      I2C_TypeDef *i2c;
      int res;
  
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              i2c = I2C_0_DEV;
              break;
  #endif
  
          default:
              return -1;
      }
  
      /* send start condition and slave address */
      DEBUG("Send slave address and clear ADDR flag\n");
      res = _wait_ready(i2c);
      if (res != 0) {
          return res;
      }
      res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      _clear_addr(i2c);
      DEBUG("Write reg into DR\n");
      i2c->DR = reg;
      DEBUG("Now start a read transaction\n");
      return _read_bytes(i2c, address, data, length, &err_flag[dev]);
  }
  
  int i2c_write_byte(i2c_t dev, uint8_t address, uint8_t data)
  {
      return i2c_write_bytes(dev, address, &data, 1);
  }
  
  int i2c_write_bytes(i2c_t dev, uint8_t address, const void *data, int length)
  {
      I2C_TypeDef *i2c;
      int res;
  
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              i2c = I2C_0_DEV;
              break;
  #endif
  
          default:
              return -1;
      }
  
      /* start transmission and send slave address */
      DEBUG("sending start sequence\n");
      res = _wait_ready(i2c);
      if (res != 0) {
          return res;
      }
      res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      _clear_addr(i2c);
      /* send out data bytes */
      res = _write(i2c, data, length, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      /* end transmission */
      DEBUG("Ending transmission\n");
      res = _stop(i2c, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      DEBUG("STOP condition was send out\n");
      return length;
  }
  
  int i2c_write_reg(i2c_t dev, uint8_t address, uint8_t reg, uint8_t data)
  {
      return i2c_write_regs(dev, address, reg, &data, 1);
  }
  
  int i2c_write_regs(i2c_t dev, uint8_t address, uint8_t reg, const void *data, int length)
  {
      I2C_TypeDef *i2c;
      int res;
  
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              i2c = I2C_0_DEV;
              break;
  #endif
  
          default:
              return -1;
      }
  
      /* start transmission and send slave address */
      res = _wait_ready(i2c);
      if (res != 0) {
          return res;
      }
      res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      _clear_addr(i2c);
      /* send register address and wait for complete transfer to be finished*/
      res = _write(i2c, &reg, 1, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      /* write data to register */
      res = _write(i2c, data, length, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      /* finish transfer */
      res = _stop(i2c, &err_flag[dev]);
      if (res != 0) {
          return res;
      }
      if (err_flag[dev]) {
          return -3;
      }
      /* return number of bytes send */
      return length;
  }
  
  void i2c_poweron(i2c_t dev)
  {
      switch (dev) {
  #if I2C_0_EN
          case I2C_0:
              I2C_0_CLKEN();
              break;
  #endif
      }
  }
  
  void i2c_poweroff(i2c_t dev)
  {
      int cnt = 0;
  
      switch (dev) {
  #if I2C_0_EN
      case I2C_0:
          while ((I2C_0_DEV->SR2 & I2C_SR2_BUSY) && cnt++ < I2C_MAX_LOOP_CNT) {}
  
          I2C_0_CLKDIS();
          break;
  #endif
      }
  }
  
  static int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t *err)
  {
      int cnt = 0;
  
      *err = 0;
      /* generate start condition */
      DEBUG("Generate start condition\n");
      dev->CR1 |= I2C_CR1_START;
      DEBUG("Wait for SB flag to be set\n");
  
      while (!(dev->SR1 & I2C_SR1_SB) && cnt++ < I2C_MAX_LOOP_CNT && !(*err));
      if (cnt == I2C_MAX_LOOP_CNT || *err) {
          return -3;
      }
  
      /* send address and read/write flag */
      DEBUG("Send address\n");
      dev->DR = (address << 1) | rw_flag;
      /* clear ADDR flag by reading first SR1 and then SR2 */
      DEBUG("Wait for ADDR flag to be set\n");
  
      cnt = 0;
      *err = 0;
      while (!(dev->SR1 & I2C_SR1_ADDR) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
      if (cnt == I2C_MAX_LOOP_CNT) {
          return -3;
      }
  
      return 0;
  }
  
  static inline void _clear_addr(I2C_TypeDef *dev)
  {
      dev->SR1;
      dev->SR2;
      DEBUG("Cleared address\n");
  }
  
  static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length, uint8_t *err)
  {
      DEBUG("Looping through bytes\n");
  
      for (int i = 0; i < length; i++) {
          /* write data to data register */
          dev->DR = data[i];
          DEBUG("Written %i byte to data reg, now waiting for DR to be empty again\n", i);
  
          /* wait for transfer to finish */
          int cnt = 0;
          *err = 0;
          while (!(dev->SR1 & I2C_SR1_TXE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
          if (cnt == I2C_MAX_LOOP_CNT || *err) {
              return -3;
          }
  
          DEBUG("DR is now empty again\n");
      }
  
      return 0;
  }
  
  static inline int _stop(I2C_TypeDef *dev, uint8_t *err)
  {
      /* make sure last byte was send */
      DEBUG("Wait if last byte hasn't been sent\n");
  
      int cnt = 0;
      *err = 0;
      while (!(dev->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {}
      if (cnt == I2C_MAX_LOOP_CNT) {
          return -3;
      }
  
      /* send STOP condition */
      dev->CR1 |= I2C_CR1_STOP;
  
      return 0;
  }
  
  static inline void i2c_irq_handler(i2c_t i2c_dev, I2C_TypeDef *dev)
  {
      unsigned volatile state = dev->SR1;
  
      /* record and clear errors */
      err_flag[i2c_dev] = (state >> 8);
      dev->SR1 &= 0x00ff;
  
      DEBUG("\n\n### I2C %d ERROR OCCURED ###\n", i2c_dev);
      DEBUG("status: %08x\n", state);
      if (state & I2C_SR1_OVR) {
          DEBUG("OVR\n");
      }
      if (state & I2C_SR1_AF) {
          DEBUG("AF\n");
      }
      if (state & I2C_SR1_ARLO) {
          DEBUG("ARLO\n");
      }
      if (state & I2C_SR1_BERR) {
          DEBUG("BERR\n");
      }
      if (state & I2C_SR1_PECERR) {
          DEBUG("PECERR\n");
      }
      if (state & I2C_SR1_TIMEOUT) {
          DEBUG("TIMEOUT\n");
      }
      if (state & I2C_SR1_SMBALERT) {
          DEBUG("SMBALERT\n");
      }
  }
  
  #if I2C_0_EN
  void I2C_0_ERR_ISR(void)
  {
      i2c_irq_handler(I2C_0, I2C_0_DEV);
  }
  #endif
  
  #endif /* I2C_NUMOF */