#include "binomial_law.h" #include <assert.h> #include <cmath> namespace Probability { BinomialLaw::BinomialLaw() : TwoParameterLaw(20.0, 0.5) { } I18n::Message BinomialLaw::title() { return I18n::Message::BinomialLaw; } Law::Type BinomialLaw::type() const { return Type::Binomial; } bool BinomialLaw::isContinuous() const { return false; } I18n::Message BinomialLaw::parameterNameAtIndex(int index) { assert(index >= 0 && index < 2); if (index == 0) { return I18n::Message::N; } else { return I18n::Message::P; } } I18n::Message BinomialLaw::parameterDefinitionAtIndex(int index) { assert(index >= 0 && index < 2); if (index == 0) { return I18n::Message::RepetitionNumber; } else { return I18n::Message::SuccessProbability; } } float BinomialLaw::xMin() { float min = 0.0f; float max = m_parameter1 > 0.0f ? m_parameter1 : 1.0f; return min - k_displayLeftMarginRatio * (max - min); } float BinomialLaw::xMax() { float min = 0.0f; float max = m_parameter1; if (max <= min) { max = min + 1.0f; } return max + k_displayRightMarginRatio*(max - min); } float BinomialLaw::yMin() { return -k_displayBottomMarginRatio*yMax(); } float BinomialLaw::yMax() { int maxAbscissa = m_parameter2 < 1.0f ? (m_parameter1+1)*m_parameter2 : m_parameter1; float result = evaluateAtAbscissa(maxAbscissa); if (result <= 0.0f || std::isnan(result)) { result = 1.0f; } return result*(1.0f+ k_displayTopMarginRatio); } bool BinomialLaw::authorizedValueAtIndex(float x, int index) const { if (index == 0) { /* As the cumulative probability are computed by looping over all discrete * abscissa within the interesting range, the complexity of the cumulative * probability is linear with the size of the range. Here we cap the maximal * size of the range to 10000. If one day we want to increase or get rid of * this cap, we should implement the explicite formula of the cumulative * probability (which depends on an incomplete beta function) to make the * comlexity O(1). */ if (x != (int)x || x < 0.0f || x > 99999.0f) { return false; } return true; } if (x < 0.0f || x > 1.0f) { return false; } return true; } double BinomialLaw::cumulativeDistributiveInverseForProbability(double * probability) { if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) { return NAN; } if (*probability >= 1.0) { return m_parameter1; } return Law::cumulativeDistributiveInverseForProbability(probability); } double BinomialLaw::rightIntegralInverseForProbability(double * probability) { if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) { return NAN; } if (*probability <= 0.0) { return m_parameter1; } return Law::rightIntegralInverseForProbability(probability); } template<typename T> T BinomialLaw::templatedApproximateAtAbscissa(T x) const { if (m_parameter1 == 0) { if (m_parameter2 == 0 || m_parameter2 == 1) { return NAN; } if (floor(x) == 0) { return 1; } return 0; } if (m_parameter2 == 1) { if (floor(x) == m_parameter1) { return 1; } return 0; } if (m_parameter2 == 0) { if (floor(x) == 0) { return 1; } return 0; } if (x > m_parameter1) { return 0; } T lResult = std::lgamma((T)(m_parameter1+1.0)) - std::lgamma(std::floor(x)+(T)1.0) - std::lgamma((T)m_parameter1 - std::floor(x)+(T)1.0)+ std::floor(x)*std::log((T)m_parameter2) + ((T)m_parameter1-std::floor(x))*std::log((T)(1.0-m_parameter2)); return std::exp(lResult); } } template float Probability::BinomialLaw::templatedApproximateAtAbscissa(float x) const; template double Probability::BinomialLaw::templatedApproximateAtAbscissa(double x) const;