#include "calculation.h" #include "calculation_store.h" #include "../shared/poincare_helpers.h" #include #include using namespace Poincare; using namespace Shared; namespace Calculation { Calculation::Calculation() : m_inputText(), m_exactOutputText(), m_approximateOutputText(), m_input(nullptr), m_exactOutput(nullptr), m_approximateOutput(nullptr), m_height(-1), m_equalSign(EqualSign::Unknown) { } Calculation::~Calculation() { if (m_input != nullptr) { delete m_input; m_input = nullptr; } if (m_exactOutput != nullptr) { delete m_exactOutput; m_exactOutput = nullptr; } if (m_approximateOutput != nullptr) { delete m_approximateOutput; m_approximateOutput = nullptr; } } Calculation& Calculation::operator=(const Calculation& other) { const char * otherInputText = other.m_inputText; const char * otherExactOutputText = other.m_exactOutputText; const char * otherApproximateOutputText = other.m_approximateOutputText; reset(); strlcpy(m_inputText, otherInputText, sizeof(m_inputText)); strlcpy(m_exactOutputText, otherExactOutputText, sizeof(m_exactOutputText)); strlcpy(m_approximateOutputText, otherApproximateOutputText, sizeof(m_approximateOutputText)); return *this; } void Calculation::reset() { m_inputText[0] = 0; m_exactOutputText[0] = 0; m_approximateOutputText[0] = 0; tidy(); } void Calculation::setContent(const char * c, Context * context, Expression * ansExpression) { reset(); m_input = Expression::parse(c); Expression::ReplaceSymbolWithExpression(&m_input, Symbol::SpecialSymbols::Ans, ansExpression); /* We do not store directly the text enter by the user because we do not want * to keep Ans symbol in the calculation store. */ PoincareHelpers::WriteTextInBuffer(m_input, m_inputText, sizeof(m_inputText)); m_exactOutput = PoincareHelpers::ParseAndSimplify(m_inputText, *context); PoincareHelpers::WriteTextInBuffer(m_exactOutput, m_exactOutputText, sizeof(m_exactOutputText)); m_approximateOutput = PoincareHelpers::Approximate(m_exactOutput, *context); PoincareHelpers::WriteTextInBuffer(m_approximateOutput, m_approximateOutputText, sizeof(m_approximateOutputText)); } KDCoordinate Calculation::height(Context * context) { if (m_height < 0) { ExpressionLayout * inputLayout = createInputLayout(); KDCoordinate inputHeight = inputLayout->size().height(); delete inputLayout; Poincare::ExpressionLayout * approximateLayout = createApproximateOutputLayout(context); KDCoordinate approximateOutputHeight = approximateLayout->size().height(); if (shouldOnlyDisplayApproximateOutput(context)) { m_height = inputHeight+approximateOutputHeight; } else { Poincare::ExpressionLayout * exactLayout = createExactOutputLayout(context); KDCoordinate exactOutputHeight = exactLayout->size().height(); KDCoordinate outputHeight = max(exactLayout->baseline(), approximateLayout->baseline()) + max(exactOutputHeight-exactLayout->baseline(), approximateOutputHeight-approximateLayout->baseline()); delete exactLayout; m_height = inputHeight + outputHeight; } delete approximateLayout; } return m_height; } const char * Calculation::inputText() { return m_inputText; } const char * Calculation::exactOutputText() { return m_exactOutputText; } const char * Calculation::approximateOutputText() { return m_approximateOutputText; } Expression * Calculation::input() { if (m_input == nullptr) { m_input = Expression::parse(m_inputText); } return m_input; } ExpressionLayout * Calculation::createInputLayout() { if (input() != nullptr) { return input()->createLayout(PrintFloat::Mode::Decimal, PrintFloat::k_numberOfStoredSignificantDigits); } return nullptr; } bool Calculation::isEmpty() { /* To test if a calculation is empty, we need to test either m_inputText or * m_exactOutputText or m_approximateOutputText, the only three fields that * are not lazy-loaded. We choose m_exactOutputText to consider that a * calculation being added is still empty until the end of the method * 'setContent'. Indeed, during 'setContent' method, 'ans' evaluation calls * the evaluation of the last calculation only if the calculation being * filled is not taken into account.*/ if (strlen(m_approximateOutputText) == 0) { return true; } return false; } void Calculation::tidy() { if (m_input != nullptr) { delete m_input; } m_input = nullptr; if (m_exactOutput != nullptr) { delete m_exactOutput; } m_exactOutput = nullptr; if (m_approximateOutput != nullptr) { delete m_approximateOutput; } m_approximateOutput = nullptr; m_height = -1; m_equalSign = EqualSign::Unknown; } Expression * Calculation::exactOutput(Context * context) { if (m_exactOutput == nullptr) { /* Because the angle unit might have changed, we do not simplify again. We * thereby avoid turning cos(Pi/4) into sqrt(2)/2 and displaying * 'sqrt(2)/2 = 0.999906' (which is totally wrong) instead of * 'cos(pi/4) = 0.999906' (which is true in degree). */ m_exactOutput = Expression::parse(m_exactOutputText); if (m_exactOutput == nullptr) { m_exactOutput = new Undefined(); } } return m_exactOutput; } ExpressionLayout * Calculation::createExactOutputLayout(Context * context) { if (exactOutput(context) != nullptr) { return PoincareHelpers::CreateLayout(exactOutput(context)); } return nullptr; } Expression * Calculation::approximateOutput(Context * context) { if (m_approximateOutput == nullptr) { /* To ensure that the expression 'm_output' is a matrix or a complex, we * call 'evaluate'. */ Expression * exp = Expression::parse(m_approximateOutputText); if (exp != nullptr) { m_approximateOutput = PoincareHelpers::Approximate(exp, *context); delete exp; } else { m_approximateOutput = new Undefined(); } } return m_approximateOutput; } ExpressionLayout * Calculation::createApproximateOutputLayout(Context * context) { if (approximateOutput(context) != nullptr) { return PoincareHelpers::CreateLayout(approximateOutput(context)); } return nullptr; } bool Calculation::shouldOnlyDisplayApproximateOutput(Context * context) { if (strcmp(m_exactOutputText, m_approximateOutputText) == 0) { return true; } if (strcmp(m_exactOutputText, "undef") == 0) { return true; } return input()->isApproximate(*context); } Calculation::EqualSign Calculation::exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context) { if (m_equalSign != EqualSign::Unknown) { return m_equalSign; } m_equalSign = exactOutput(context)->isEqualToItsApproximationLayout(approximateOutput(context), k_printedExpressionSize, Preferences::sharedPreferences()->angleUnit(), Preferences::sharedPreferences()->displayMode(), Preferences::sharedPreferences()->numberOfSignificantDigits(), *context) ? EqualSign::Equal : EqualSign::Approximation; return m_equalSign; } }