#include <poincare/hyperbolic_arc_tangent.h> #include <poincare/simplification_engine.h> #include <poincare/trigonometry.h> extern "C" { #include <assert.h> } #include <cmath> namespace Poincare { Expression::Type HyperbolicArcTangent::type() const { return Type::HyperbolicArcTangent; } Expression * HyperbolicArcTangent::clone() const { HyperbolicArcTangent * a = new HyperbolicArcTangent(m_operands, true); return a; } Expression * HyperbolicArcTangent::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING Expression * op = editableOperand(0); if (op->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif return this; } template<typename T> std::complex<T> HyperbolicArcTangent::computeOnComplex(const std::complex<T> c, AngleUnit angleUnit) { std::complex<T> result = std::atanh(c); /* atanh has a branch cut on ]-inf, -1[U]1, +inf[: it is then multivalued on * this cut. We followed the convention chosen by the lib c++ of llvm on * ]-inf+0i, -1+0i[ (warning: atanh takes the other side of the cut values on * ]-inf-0i, -1-0i[) and choose the values on ]1+0i, +inf+0i[ to comply with * atanh(-x) = -atanh(x) and sin(artanh(x)) = x/sqrt(1-x^2). */ if (c.imag() == 0 && c.real() > 1) { result.imag(-result.imag()); // other side of the cut } return Trigonometry::RoundToMeaningfulDigits(result); } }