#include #include #include #include #include "helper.h" using namespace Poincare; constexpr Poincare::Expression::Sign Positive = Poincare::Expression::Sign::Positive; constexpr Poincare::Expression::Sign Negative = Poincare::Expression::Sign::Negative; constexpr Poincare::Expression::Sign Unknown = Poincare::Expression::Sign::Unknown; void assert_parsed_expression_sign(const char * expression, Poincare::Expression::Sign sign) { GlobalContext globalContext; Expression * e = parse_expression(expression); Expression::Simplify(&e, globalContext, Degree); assert(e->sign() == sign); delete e; } QUIZ_CASE(poincare_sign) { assert_parsed_expression_sign("abs(-cos(2))", Positive); assert_parsed_expression_sign("2.345E-23", Positive); assert_parsed_expression_sign("-2.345E-23", Negative); assert_parsed_expression_sign("2*(-3)*abs(-32)", Negative); assert_parsed_expression_sign("2*(-3)*abs(-32)*cos(3)", Unknown); assert_parsed_expression_sign("2^(-abs(3))", Positive); assert_parsed_expression_sign("(-2)^4", Positive); assert_parsed_expression_sign("(-2)^3", Negative); assert_parsed_expression_sign("random()", Positive); assert_parsed_expression_sign("42/3", Positive); assert_parsed_expression_sign("-23/32", Negative); assert_parsed_expression_sign("P", Positive); assert_parsed_expression_sign("X", Positive); } QUIZ_CASE(poincare_polynomial_degree) { assert_parsed_expression_polynomial_degree("x+1", 1); assert_parsed_expression_polynomial_degree("cos(2)+1", 0); assert_parsed_expression_polynomial_degree("confidence(0.2,10)+1", -1); assert_parsed_expression_polynomial_degree("diff(3*x+x,2)", 0); assert_parsed_expression_polynomial_degree("diff(3*x+x,x)", -1); assert_parsed_expression_polynomial_degree("(3*x+2)/3", 1); assert_parsed_expression_polynomial_degree("(3*x+2)/x", -1); assert_parsed_expression_polynomial_degree("int(2*x, 0, 1)", 0); assert_parsed_expression_polynomial_degree("[[1,2][3,4]]", -1); assert_parsed_expression_polynomial_degree("(x^2+2)*(x+1)", 3); assert_parsed_expression_polynomial_degree("-(x+1)", 1); assert_parsed_expression_polynomial_degree("(x^2+2)^(3)", 6); assert_parsed_expression_polynomial_degree("prediction(0.2,10)+1", -1); assert_parsed_expression_polynomial_degree("2-x-x^3", 3); assert_parsed_expression_polynomial_degree("P*x", 1); } void assert_parsed_expression_has_characteristic_range(const char * expression, float range, Expression::AngleUnit angleUnit = Expression::AngleUnit::Degree) { GlobalContext globalContext; Expression * e = parse_expression(expression); Expression::Simplify(&e, globalContext, angleUnit); if (std::isnan(range)) { assert(std::isnan(e->characteristicXRange(globalContext, angleUnit))); } else { assert(std::fabs(e->characteristicXRange(globalContext, angleUnit) - range) < 0.0000001f); } delete e; } QUIZ_CASE(poincare_characteristic_range) { assert_parsed_expression_has_characteristic_range("cos(x)", 360.0f); assert_parsed_expression_has_characteristic_range("cos(-x)", 360.0f); assert_parsed_expression_has_characteristic_range("cos(x)", 2.0f*M_PI, Expression::AngleUnit::Radian); assert_parsed_expression_has_characteristic_range("cos(-x)", 2.0f*M_PI, Expression::AngleUnit::Radian); assert_parsed_expression_has_characteristic_range("sin(9*x+10)", 40.0f); assert_parsed_expression_has_characteristic_range("sin(9*x+10)+cos(x/2)", 720.0f); assert_parsed_expression_has_characteristic_range("sin(9*x+10)+cos(x/2)", 4.0f*M_PI, Expression::AngleUnit::Radian); assert_parsed_expression_has_characteristic_range("x", NAN); assert_parsed_expression_has_characteristic_range("cos(3)+2", 0.0f); assert_parsed_expression_has_characteristic_range("log(cos(40*x))", 9.0f); assert_parsed_expression_has_characteristic_range("cos(cos(x))", 360.0f); } void assert_parsed_expression_has_variables(const char * expression, const char * variables) { Expression * e = parse_expression(expression); char variableBuffer[Expression::k_maxNumberOfVariables+1] = {0}; int numberOfVariables = e->getVariables(Poincare::Symbol::isVariableSymbol, variableBuffer); if (variables == nullptr) { assert(numberOfVariables == -1); } else { assert(numberOfVariables == strlen(variables)); char * currentChar = variableBuffer; while (*variables != 0) { assert(*currentChar++ == *variables++); } } delete e; } QUIZ_CASE(poincare_get_variables) { assert_parsed_expression_has_variables("x+y", "xy"); assert_parsed_expression_has_variables("x+y+z+2*t", "xyzt"); assert_parsed_expression_has_variables("abcdef", "abcdef"); assert_parsed_expression_has_variables("abcdefg", nullptr); assert_parsed_expression_has_variables("abcde", "abcde"); assert_parsed_expression_has_variables("x^2+2*y+k!*A+w", "xykw"); } void assert_parsed_expression_has_polynomial_coefficient(const char * expression, char symbolName, const char ** coefficients, Expression::AngleUnit angleUnit = Expression::AngleUnit::Degree) { GlobalContext globalContext; Expression * e = parse_expression(expression); Expression::Reduce(&e, globalContext, angleUnit); Expression * coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients]; int d = e->getPolynomialCoefficients(symbolName, coefficientBuffer, globalContext, Radian); for (int i = 0; i <= d; i++) { Expression * f = parse_expression(coefficients[i]); Expression::Reduce(&coefficientBuffer[i], globalContext, angleUnit); Expression::Reduce(&f, globalContext, angleUnit); assert(coefficientBuffer[i]->isIdenticalTo(f)); delete f; delete coefficientBuffer[i]; } assert(coefficients[d+1] == 0); delete e; } QUIZ_CASE(poincare_get_polynomial_coefficients) { const char * coefficient0[] = {"2", "1", "1", 0}; assert_parsed_expression_has_polynomial_coefficient("x^2+x+2", 'x', coefficient0); const char * coefficient1[] = {"12+(-6)*P", "12", "3", 0}; //3*x^2+12*x-6*π+12 assert_parsed_expression_has_polynomial_coefficient("3*(x+2)^2-6*P", 'x', coefficient1); // TODO: decomment when enable 3-degree polynomes //const char * coefficient2[] = {"2+32*x", "2", "6", "2", 0}; //2*n^3+6*n^2+2*n+2+32*x //assert_parsed_expression_has_polynomial_coefficient("2*(n+1)^3-4n+32*x", 'n', coefficient2); const char * coefficient3[] = {"1", "-P", "1", 0}; //x^2-Pi*x+1 assert_parsed_expression_has_polynomial_coefficient("x^2-P*x+1", 'x', coefficient3); }