#include <poincare/least_common_multiple.h> #include <poincare/rational.h> #include <poincare/undefined.h> #include <poincare/arithmetic.h> extern "C" { #include <assert.h> } #include <cmath> namespace Poincare { Expression::Type LeastCommonMultiple::type() const { return Type::LeastCommonMultiple; } Expression * LeastCommonMultiple::clone() const { LeastCommonMultiple * a = new LeastCommonMultiple(m_operands, true); return a; } Expression * LeastCommonMultiple::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } Expression * op0 = editableOperand(0); Expression * op1 = editableOperand(1); #if MATRIX_EXACT_REDUCING if (op0->type() == Type::Matrix || op1->type() == Type::Matrix) { return replaceWith(new Undefined(), true); } #endif if (op0->type() == Type::Rational) { Rational * r0 = static_cast<Rational *>(op0); if (!r0->denominator().isOne()) { return replaceWith(new Undefined(), true); } } if (op1->type() == Type::Rational) { Rational * r1 = static_cast<Rational *>(op1); if (!r1->denominator().isOne()) { return replaceWith(new Undefined(), true); } } if (op0->type() != Type::Rational || op1->type() != Type::Rational) { return this; } Rational * r0 = static_cast<Rational *>(op0); Rational * r1 = static_cast<Rational *>(op1); Integer a = r0->numerator(); Integer b = r1->numerator(); Integer lcm = Arithmetic::LCM(&a, &b); return replaceWith(new Rational(lcm), true); } template<typename T> Complex<T> * LeastCommonMultiple::templatedApproximate(Context& context, AngleUnit angleUnit) const { Evaluation<T> * f1Input = operand(0)->privateApproximate(T(), context, angleUnit); Evaluation<T> * f2Input = operand(1)->privateApproximate(T(), context, angleUnit); T f1 = f1Input->toScalar(); T f2 = f2Input->toScalar(); delete f1Input; delete f2Input; if (std::isnan(f1) || std::isnan(f2) || f1 != (int)f1 || f2 != (int)f2) { return new Complex<T>(Complex<T>::Undefined()); } if (f1 == 0.0f || f2 == 0.0f) { return new Complex<T>(0); } int a = (int)f2; int b = (int)f1; if (f1 > f2) { b = a; a = (int)f1; } int product = a*b; int r = 0; while((int)b!=0){ r = a - ((int)(a/b))*b; a = b; b = r; } return new Complex<T>(product/a); } }