// -*- mode:C++ -*-
/*
* Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef _GIAC_MODFACTOR_H_
#define _GIAC_MODFACTOR_H_
#include "first.h"
#include "global.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
template class tensor;
typedef tensor polynome;
typedef vecteur modpoly;
typedef vecteur dense_POLY1; // same internal rep but assumes non modular op
// **************************************************************
// factorization utilities
// to be used to factor a square-free unitary mod polynomial
// assuming modulo is prime (and not too large, must fit in int)
// *************************************************************
void intersect(std::vector::iterator tab, std::vector::iterator othertab,int size) ;
int sigma(const std::vector & deg);
// v[i]=x^(p*i) mod q
// matrix of the v[i] for i=0..jstart or i=0..degree(q) if jstart=0
void qmatrix(const modpoly & q,environment * env,std::vector & v,int jstart=0);
// compute s(x)=r(x^p) mod q using the q-matrix
void xtoxpowerp(const modpoly & r, const std::vector & v,environment * env,int qsize,modpoly & s);
// find modular roots and linear factors
bool roots(const modpoly & q, environment * env,vecteur & v,std::vector & w);
// Find linear factors of q in Z or Z[i] depending on env->complexe
int do_linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,vecteur & croots,int & i);
// find linear factor if NTL not installed
int linearfind(const polynome & q,environment * env,polynome & qrem,vectpoly & v,int &ithprime);
// distinct degree modular factorization
bool ddf(const modpoly & q,const std::vector & qmat,environment *env,std::vector< facteur >& v);
// split a polynomial ddfactor into factors of same degree i
bool cantor_zassenhaus(const modpoly & ddfactor,int i,const std::vector & qmat, environment * env,std::vector & v);
bool cantor_zassenhaus(const std::vector< facteur > & v_in,const std::vector & qmat, environment * env,std::vector & v);
// number of factors of a ddf factorization
int nfact(const std::vector< facteur > & v,bool * possible_degrees , int maxdeg);
// Landau-Mignotte bound
gen mignotte_bound(const dense_POLY1 & p);
gen mignotte_bound(const polynome & p);
// lift factorization from Z/pZ to Z/p^kZ for a sufficiently large k
// modulo is modified to modulo^k
bool liftl(environment * env,dense_POLY1 & q,gen &bound,std::vector & v_in,vectpoly & v_out);
// given a factorization v_in of q in Z/p^kZ find a factorization v_out
// over Z, k is the minimal # of factors of v_in to be combined
void combine(const dense_POLY1 & q, const std::vector & v_in,environment * env,vectpoly & v_out,std::vector & possible_degrees, int k=1);
bool do_factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & i,int debug,int modfactor_primes);
bool factorunivsqff(const polynome & q,environment * env,vectpoly & v,int & ithprime,int debug,int modfactor_primes);
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // NO_NAMESPACE_GIAC
#endif // _GIAC_MODFACTOR_H