texpand(cos(x+y)) ; texpand(cos(3*x)); texpand((sin(3*x)+sin(7*x))/sin(5*x)); normal((4*(cos(x))^2-1)*((sin(x))/(16*(cos(x))^4-12*(cos(x))^2+1))/(sin(x))+(64*(cos(x))^6-80*(cos(x))^4+24*(cos(x))^2-1)*((sin(x))/(16*(cos(x))^4-12*(cos(x))^2+1))/(sin(x))); tlin(cos(x)*cos(y)) ; tlin(cos(x)^3) ; tlin(4*cos(x)^2-2); halftan(sin(2*x)/(1+cos(2*x))); normal(2*((tan(2*x/2))/((tan(2*x/2))^2+1))/(1+(1-(tan(2*x/2))^2)/((tan(2*x/2))^2+1))) ; simplify(tan(2*x/2)); halftan(sin(x)^2+cos(x)^2); normal((2*(tan(x/2))/((tan(x/2))^2+1))^2+((1-(tan(x/2))^2)/((tan(x/2))^2+1))^2); fourier_cn(x^2,x,1,0,0) ; fourier_cn(x^2,x,1,0) ; fourier_cn(x^2,x,2,0,-1); fourier_cn(x^2,x,2,0); fourier_cn(x^2,x,2,n); subst((2*(i)*pi^2*n^2*exp((-i)*pi*n*2)+2*pi*n*exp((-i)*pi*n*2)+ (-i)*exp((-i)*pi*n*2)+i)/(pi^3*n^3),(exp((-i)*pi*n*2))=1) ; fourier_cn(x^2,x,2,n); fourier_cn(x^2,x,2*pi,n); subst((2*(i)*pi^2*n^2*exp((-i)*n*2*pi)+2*pi*n*exp((-i)*n*2*pi)+ (-i)*exp((-i)*n*2*pi)+i)/(pi*n^3),(exp((-i)*n*2*pi))=1) ; normal(((2*(i)*pi^2*n^2+2*pi*n+-i+i)/pi)/(n^3)) ; fourier_cn(x^2,x,2*pi,0); fourier_cn(x^2,x,2,n) = ((2*i)*pi^2*n^2*exp((-i)*pi*n*2)+ 2*pi*n*exp((-i)*pi*n*2)+(-i)*exp((-i)*pi*n*2)+i)/(pi^3*n^3); laplace(x*exp(3*x)); ilaplace((1/(x^2-6*x+9)+(x-6)*a+b)/(x^2-6*x+9)); normal((216*x^3+(-(3888*x))*a+1296*x*b+1296*a)/1296*exp(3*x)); laplace(sin(t),t,s); laplace(sin(x)); egvl([[4,1,-2],[1,2,-1],[2,1,0]]); egv([[4,1,-2],[1,2,-1],[2,1,0]]); jordan([[4,1,-2],[1,2,-1],[2,1,0]]); pcar([[4,1,-2],[1,2,-1],[2,1,0]]); mkisom([[-1,2,-1],pi],1); mkisom([pi],-1); mkisom(pi/2,1); mkisom([[1,1,1],pi/3],-1); series(cos(2*x)^2,x=pi/6, 4 ) ; series(atan(x),x=+infinity,5); series((2*x-1)*exp(1/(x-1)),x=+infinity,4); series((2*x-1)*exp(1/(x-1)),x=-infinity,3); series((1+x)^(1/x)/x^3,x=0+0); limit(1/x,x,0,1); limit((2*x-1)*exp(1/(x-1)),x=+infinity) ; qxa(2*x*y,[x,y]); axq([[0,1],[1,0]],[x,y]) ; axq([[1,2],[3,4]],[x,y]) ; gauss(2*x*y,[x,y]); rref([[3,1,-2],[3,2,2]]); 3 % 13+10 % 13; 31 % 13-10 % 13; normal(11*x+5-8*x+-6 ); normal((11*x+5)*(8*x+6)) ; linsolve([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z]); ker([[1,1,2],[2,1,3],[3,1,4]]); image([[1,1,2],[2,1,3],[3,1,4]]); tran([[1,2],[3,4]]); tran([[1/2,2],[3,4]]); derive(2*x^2*y-x*z^3,[x,y,z]); lin((exp(x)+1)^2); gcd(x^2+2*x+1,x^2-1); gcd([x^2+2*x+1,x^3-1,x^2-1,x^2+x-2]); simp2(x^3-1,x^2-1); lcm([x,x^2+2*x+1,x^2-1]); lcm(x^2+2*x+1,x^2-1); factor(x^2+2*x+1); factor(x^4-2*x^2+1); factor(x^3+x^2-x-1); factor(x^3-2*x^2+1,x^2-x); quo(x^2+2*x +1,x); rem([1,2,3,4],[-1,2]); rem([1,2,4],[1,1,2]); egcd(x^2+2*x+1,x^2-1) ; abcuv(x^2+2*x+1 ,x^2-1,x+1); abcuv(x^2+2*x+1 ,x^2-1,x^3+1); horner(x^4+2*x^3-3*x^2+x-2,1); limit(1/x,x=0,-1); series((exp(x)-1)/x,x=0,-1); limit(abs(x),x=0,-1); 1/3%13; horner([1,-2,1],2); e2r(x^2-1); r2e([1,0,-1],x); gcd((x+1)^2,x^3+1,x^2-1,x^2+x-2); gcd((x+1)^2,x^2-1); gcd((x+1)^2,x^2+x); integrate(x*log(x)); ibp(-(2*log(x)),x); ibp(log(x),x); ibp([x*(log(x))^2,-(2*log(x))],x) ; ibp((log(x))^2,x) ; lcm((x+1)^2,x^2-1) ; lin((sinh(x))^2) ; lcm(x,x^2+2*x+1,x^2-1); lcm(x^2+2*x+1,x^2-1) ; lcm([x,x^2+2*x+1,x^2-1]); factor(x^3-2*x^2+1,x^2-x) ; factor((x^3-2*x^2+1)*sqrt(5),x^2-x) ; factor((x^3-2*x^2+1)*sqrt(5))/(sqrt(5)) ; lu([[3,5],[4,5]]); gamma(0.5); zeta(2); qr([[3,5],[4,5]]); peval([1,0,-1],sqrt(2)); ibp([x*ln(x),-1],1); ibp(ln(x),x); svd([[1,2],[3,4]]); svd([[1,2,1],[3,4,1],[1,5,6]]); sum(1/n^2,n,1,10); sum(1/n^2,n,1,+infinity); trace([[1,2],[3,4]]); cross([1,2,3],[4,3,2]) ; [1,2,3]*[4,3,2]; dot([1,2,3],[4,3,2]) ; idn(3); idn(30); ranm([2,4]); ranm(3); partfrac((x^5-2*x^3+1)/(x^4-2*x^3+2*x^2-2*x+1)); plotfunc(1/sqrt(8*pi)*exp(-1/8*(x-198)^2),x) ; acos2asin(acos(x)+asin(x)) ; asin2acos(acos(x)+asin(x)); atan2asin(atan(x)); asin2atan(asin(x)) ; acos2atan(acos(x)); atan2acos(atan(x)); trig2exp(tan(x)); trigcos((sin(x))^4+(cos(x))^2+1); trigcos((sin(x))^2+(cos(x))^2+1); trigsin((sin(x))^4+(cos(x))^2+1); divis(x^4-1); factors(x^4-2*x^2+1); factors(x^2+2*x+1); factors([x^3-2*x^2+1,x^2-x]); simp2(x^3-1,x^2-1); simp2([x^3-1,x^3-x],[x^2-1,x^2-x]) ; simp2(45,25) ; simp2(x^3-x,x^2-x); propfrac((5*x+3)*(x-1)/(x+2)); permu2cycles([1,3,4,5,2,0]); cycles2permu([[1,3,5],[2,4]]); p1op2([3,4,5,2,0,1],[2,0,1,4,3,5]); tan2sincos(tan(x)); syst2mat([x+y,x-y-2],[x,y]); trn([[i,1+i],[1,1+-i]]); tran([[i,1+i],[1,1+-i]]); hadamard([[1,2],[3,4]],[[5,6],[7,8]]); hilbert(4); vandermonde(a,2,3) ; laplacian(2*x^2*y-x*z^3,[x,y,z]); hessian(2*x^2*y-x*z , [x,y,z]); divergence([x*z,-y^2,2*x^y],[x,y,z]); curl([x*z,-y^2,2*x^y],[x,y,z]); curl([x*z,-(y^2),2*x*y],[x,y,z]); tchebyshev1(4); tchebyshev1(3); tchebyshev2(3); tchebyshev2(4); legendre(4); hermite(6) ; laguerre(3) ; tcollect(sin(x)+cos(x)); lncollect(log(x+1)+log(x-1)); trig2exp(sin(x)); rref([[3, 1, -2], [3, 2, 2]]); rref([[3,1,-2],[3,2,2]]); evalf(psi(3)) ; psi(3) ; preval(x^2+x,2,3); fxnd((x^2-1)/(x-1)); fxnd(42/12) ; reorder(x^2+2*x*a+a^2+z^2-x*z,[a,x,z]); bernoulli(4); syst2mat([(x+y)=0,(x-y)=2],[x,y]); adjoint_matrix([[4,1],[1,2]]); adjoint_matrix([[4,1,-2],[1,2,-1],[2,1,0]]); exlr(a=b); gbasis([2*x*y-y^2,x^2-2*x*y],[x,y]); greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y,z]); lagrange([[1,3],[0,1]]); lvar(x*y*sin(x)); lname(x*y*sin(x)); valuation(x^3+x); valuation(1,0,1,0) ; suppress([3,4,2],1); append([3,4,2],1) ; size([3,4,2]); degree(x^3+x); divpc(1+x^2+x^3,1+x^2,5) ; ptayl(x^2+2*x+1,2); horner(x^2-2*x+1,2); froots((x^5-2*x^4+x^3)/(x-2)); fcoeffs([1,2,0,3,2,-1]); trn([[i, 1+i],[1, 1-i]]); epsilon2zero(1e-13+x) ; solve(derive(2*x^2*y-x*z , [x,y,z]),[x,y,z]); rank([[1,2],[2,4]]); canonical_form(x^2-6*x+1) ; det(idn(3)); det([[1,2],[3,4]]) ; changebase([[1,2],[3,4]],[[1,1],[0,1]]); changebase([[1,2],[3,4]],[[1,0],[0,1]]); tsimplify((sin(7*x)+sin(3*x))/sin(5*x)); pmin([[1,0],[0,1]]); potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z]); vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z]); gramschmidt([1,1+x], (p,q)->integrate(p*q,x,-1,1)); resultant(x^3-p*x+q,3*x^2-p,x); sturm(x^3+1,x); sturmab(x^2*(x^3+2),x,-2,0); sturm(x^4+x,x); float2rational(1.41422) ; truncate((1+x+x^2/2)^3,4); truncate(1+x+x^5+x^7,6); truncate(1+x+x^5,4) ; sturm((x^3+1)^2); ibpu([x*(log(x))^2+x*(-(2*log(x))),2],0); ibpdv([x.ln(x),-1],0); ibpdv(log(x),x) ; normal((2*x^2+12)*(5*x-4) % 13); gcd( (2*x^2+5) % 13, (5*x^2+2*x-3) % 13); normal(((2*x+1) % 13)^5); rref([1,2,9] % 13,[3,10,0] % 13); canonical_form(2*x^2-12*x+1); asec(pi/2); asec(1) ; asec(2); acsc(2) ; acsc(1/2); changebase([[1,1],[2,3]],[[1,1],[0,1]]); changebase([[1,1],[0,1]],[[1,1],[2,3]]); changebase([[1,2],[1,3]],[[1,1],[0,1]]); cot(pi/2); csc(pi/2); curl([2*x*y,x*z,y*z],[x,y,z]); degree([1,0,1,0]); degree(x^3+x) ; divpc(x^4+x+2,x^2+1); series((x^4+x+2)/(x^2+1),x=0,5); est_cycle([1,0,5]); est_cycle([1,0,5,1]); epsilon2zero(1e-13+x+5); est_permu([4,2,2,1]); est_permu([4,2,3,1,0]); hadamard([[1,2],[3,4]],[[3,4],[5,6]]); valuation(x^4+x^3); valuation([1,1,0,0,0]); trn([[1,2+i],[3,4]]); tran(conj([[1,2+i],[3,4]])); truncate((x^2+x)^2,3); truncate((x^2+x+1)^2,3); vandermonde([1,2,a]); vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z]); vars; syst2mat([x-y=1,x+2*y],[x,y]); tan(pi/4); signature([1,0,3,4,2]); sec(pi/3); rank([[1,2],[3,4]]); suppress([0,1,2,3],2); potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z]); chinrem([x^2,x^3+1],[x+1,x^2+x+1]); chinrem([x,x^2+1],[x-1,x^2-1]); quo([1,2,4],[1,1,2]); chinrem([x+2,x^2+1],[x+1,x^2+x+1]); exp2pow(exp(2*log(x))) ; lncollect(exp(2*log(x))); lin((sinh(x))^2); assume(n,integer); fourier_cn(x^2,x,2,n); fourier_cn(x^2,x,2,n,-1); purge(n); cyclotomic(4); solve((x^4-1)=3); axq([[1,2],[2,4]],[x,y]); axq([[0,1],[1,0]],[x,y]) ; qr([[3,5],[4,5]]) ; [[3,5],[4,5]]/[[-5.0,-7.0],[0,-1.0]] ; float2rational(25.591) ; mkisom([1,2],-1) ; float2rational(255.91) ;