#include #include #include #include "../model/model.h" #include "../regression_context.h" #include "../store.h" using namespace Poincare; using namespace Regression; /* The data was generated by choosing X1 and the coefficients of the regression, * then filling Y1 with the regression formula + random()/10. */ void assert_regression_is(double * xi, double * yi, int numberOfPoints, Model::Type modelType, double * trueCoefficients) { double precision = 0.1; int series = 0; Regression::Store store; // Set the points and the regression type for (int i = 0; i < numberOfPoints; i++) { store.set(xi[i], series, 0, i); store.set(yi[i], series, 1, i); } RegressionContext context(&store); store.setSeriesRegressionType(series, modelType); // Compute the coefficients double * coefficients = store.coefficientsForSeries(series, &context); // Comapre the coefficients int numberOfCoefs = store.modelForSeries(series)->numberOfCoefficients(); for (int i = 0; i < numberOfCoefs; i++) { assert(std::fabs(coefficients[i] - trueCoefficients[i]) < precision); } } QUIZ_CASE(linear_regression) { double x[] = {1.0, 8.0, 14.0, 79.0}; double y[] = {-3.581, 20.296, 40.676, 261.623}; double coefficients[] = {3.4, -7.0}; assert_regression_is(x, y, 4, Model::Type::Linear, coefficients); } QUIZ_CASE(quadratic_regression) { double x[] = {-34.0, -12.0, 5.0, 86.0, -2.0}; double y[] = {-8241.389, -1194.734, -59.163, - 46245.39, -71.774}; double coefficients[] = {-6.5, 21.3, -3.2}; assert_regression_is(x, y, 5, Model::Type::Quadratic, coefficients); } QUIZ_CASE(cubic_regression) { double x[] = {-3.0, -2.8, -1.0, 0.0, 12.0}; double y[] = {691.261, 566.498, 20.203, -12.865, -34293.21}; double coefficients[] = {-21.2, 16.0, 4.1, -12.9}; assert_regression_is(x, y, 5, Model::Type::Cubic, coefficients); } QUIZ_CASE(quartic_regression) { double x[] = {1.6, 3.5, 3.5, -2.8, 6.4, 5.3, 2.9, -4.8, -5.7, 3.1}; double y[] = {-112.667, -1479.824, -1479.805, 1140.276, -9365.505, -5308.355, -816.925, 5554.007, 9277.107, -1009.874}; double coefficients[] = {0.6, -43, 21.5, 3.1, -0.5}; assert_regression_is(x, y, 10, Model::Type::Quartic, coefficients); } QUIZ_CASE(logarithmic_regression) { double x[] = {0.2, 0.5, 5, 7}; double y[] = {-11.952, -9.035, -1.695, -0.584}; double coefficients[] = {3.2, -6.9}; assert_regression_is(x, y, 4, Model::Type::Logarithmic, coefficients); } QUIZ_CASE(exponential_regression) { double x[] = {5.5, 5.6, 5.7, 5.8, 5.9, 6.0}; double y[] = {-276.842, -299.956, -324.933, -352.0299, -381.314, -413.0775}; double coefficients[] = {-3.4, 0.8}; assert_regression_is(x, y, 6, Model::Type::Exponential, coefficients); } QUIZ_CASE(power_regression) { double x[] = {1.0, 50.0, 34.0, 67.0, 20.0}; double y[] = {71.860, 2775514, 979755.1, 6116830, 233832.9}; double coefficients[] = {71.8, 2.7}; assert_regression_is(x, y, 5, Model::Type::Power, coefficients); } // No case for trigonometric regression, because it has no unique solution /* This data was generated without the random error, otherwise it did not pass * the test. */ QUIZ_CASE(logistic_regression) { double x[] = {2.3, 5.6, 1.1, 4.3}; double y[] = {3.948, 4.694, 2.184, 4.656}; double coefficients[] = {6, 1.5, 4.7}; assert_regression_is(x, y, 4, Model::Type::Logistic, coefficients); }