#include "store.h" #include "model/cubic_model.h" #include "model/exponential_model.h" #include "model/linear_model.h" #include "model/logarithmic_model.h" #include "model/logistic_model.h" #include "model/power_model.h" #include "model/quadratic_model.h" #include "model/quartic_model.h" #include "model/trigonometric_model.h" #include "apps/apps_container.h" #include #include #include #include #include using namespace Shared; namespace Regression { static inline float max(float x, float y) { return (x>y ? x : y); } static inline float min(float x, float y) { return (x= 0 && series < k_numberOfSeries); if (m_regressionTypes[series] != type) { m_regressionTypes[series] = type; m_regressionChanged[series] = true; } } int Store::closestVerticalRegression(int direction, double x, double y, int currentRegressionSeries, Poincare::Context * globalContext) { int regressionSeries = -1; float closestDistance = INFINITY; /* The conditions to test on all the regressions are in this order: * - the current regression is not the current regression * - the next regression point should be within the window abscissa bounds * - it is the closest one in abscissa to x * - it is above y if direction > 0 and below otherwise */ for (int series = 0; series < k_numberOfSeries; series ++) { if (!seriesIsEmpty(series) && series != currentRegressionSeries) { double regressionY = yValueForXValue(series, x, globalContext); if ((m_yMin <= regressionY && regressionY <= m_yMax) && (std::fabs(regressionY - y) < closestDistance) && (regressionY - y > 0) == (direction > 0)) { closestDistance = std::fabs(regressionY - y); regressionSeries = series; } } } return regressionSeries; } /* Dots */ int Store::closestVerticalDot(int direction, double x, double y, int currentSeries, int currentDot, int * nextSeries, Poincare::Context * globalContext) { double nextX = INFINITY; double nextY = INFINITY; int selectedDot = -1; /* The conditions to test on all dots are in this order: * - if the currentDot is valid, the next series should not be the current series * - the next dot should not be the current dot * - the next dot should be within the window abscissa bounds * - the next dot is the closest one in abscissa to x * - the next dot is above the regression curve if direction == 1 and below * otherwise * - the next dot is above/under y * - if the current dot is valid, do not select a dot of the same series */ for (int series = 0; series < k_numberOfSeries; series ++) { if (!seriesIsEmpty(series) && (currentDot < 0 || currentSeries != series)) { for (int index = 0; index < numberOfPairsOfSeries(series); index++) { if ((currentSeries != series) || (index != currentDot)) { double currentDataX = m_data[series][0][index]; double currentDataY = m_data[series][1][index]; if ((m_xMin <= currentDataX && currentDataX <= m_xMax) && (std::fabs(currentDataX - x) <= std::fabs(nextX - x)) && ((currentDataY - yValueForXValue(currentSeries, currentDataX, globalContext) >= 0) == (direction > 0)) && ((currentDataY > y) == (direction > 0))) { // Handle edge case: if 2 dots have the same abscissa but different ordinates if (nextX != currentDataX || ((nextY - currentDataY >= 0) == (direction > 0))) { nextX = currentDataX; nextY = currentDataY; selectedDot = index; *nextSeries = series; } } } } // Compare with the mean dot if ((currentSeries != series) || (numberOfPairsOfSeries(series) != currentDot)) { double meanX = meanOfColumn(series, 0); double meanY = meanOfColumn(series, 1); if (m_xMin <= meanX && meanX <= m_xMax && (std::fabs(meanX - x) <= std::fabs(nextX - x)) && ((meanY - yValueForXValue(currentSeries, meanX, globalContext) >= 0) == (direction > 0)) && ((meanY > y) == (direction > 0))) { if (nextX != meanX || ((nextY - meanY >= 0) == (direction > 0))) { selectedDot = numberOfPairsOfSeries(series); *nextSeries = series; } } } } } return selectedDot; } int Store::nextDot(int series, int direction, int dot) { float nextX = INFINITY; int selectedDot = -1; double meanX = meanOfColumn(series, 0); float x = meanX; if (dot >= 0 && dot < numberOfPairsOfSeries(series)) { x = get(series, 0, dot); } /* We have to scan the Store in opposite ways for the 2 directions to ensure to * select all dots (even with equal abscissa) */ if (direction > 0) { for (int index = 0; index < numberOfPairsOfSeries(series); index++) { /* The conditions to test are in this order: * - the next dot is the closest one in abscissa to x * - the next dot is not the same as the selected one * - the next dot is at the right of the selected one */ if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) && (index != dot) && (m_data[series][0][index] >= x)) { // Handle edge case: 2 dots have same abscissa if (m_data[series][0][index] != x || (index > dot)) { nextX = m_data[series][0][index]; selectedDot = index; } } } // Compare with the mean dot if (std::fabs(meanX - x) < std::fabs(nextX - x) && (numberOfPairsOfSeries(series) != dot) && (meanX >= x)) { if (meanX != x || (numberOfPairsOfSeries(series) > dot)) { selectedDot = numberOfPairsOfSeries(series); } } } else { // Compare with the mean dot if (std::fabs(meanX - x) < std::fabs(nextX - x) && (numberOfPairsOfSeries(series) != dot) && (meanX <= x)) { if ((meanX != x) || (numberOfPairsOfSeries(series) < dot)) { nextX = meanX; selectedDot = numberOfPairsOfSeries(series); } } for (int index = numberOfPairsOfSeries(series)-1; index >= 0; index--) { if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) && (index != dot) && (m_data[series][0][index] <= x)) { // Handle edge case: 2 dots have same abscissa if (m_data[series][0][index] != x || (index < dot)) { nextX = m_data[series][0][index]; selectedDot = index; } } } } return selectedDot; } /* Window */ void Store::setDefault() { float minX = FLT_MAX; float maxX = -FLT_MAX; for (int series = 0; series < k_numberOfSeries; series++) { if (!seriesIsEmpty(series)) { minX = min(minX, minValueOfColumn(series, 0)); maxX = max(maxX, maxValueOfColumn(series, 0)); } } float range = maxX - minX; setXMin(minX - k_displayHorizontalMarginRatio*range); setXMax(maxX + k_displayHorizontalMarginRatio*range); setYAuto(true); } /* Series */ bool Store::seriesIsEmpty(int series) const { return numberOfPairsOfSeries(series) < 2; } /* Calculations */ double * Store::coefficientsForSeries(int series, Poincare::Context * globalContext) { assert(series >= 0 && series <= k_numberOfSeries); assert(!seriesIsEmpty(series)); uint32_t storeChecksumSeries = storeChecksumForSeries(series); Poincare::Expression::AngleUnit currentAngleUnit = Poincare::Preferences::sharedPreferences()->angleUnit(); if (m_angleUnit != currentAngleUnit) { m_angleUnit = currentAngleUnit; for (int i = 0; i < k_numberOfSeries; i++) { if (m_regressionTypes[i] == Model::Type::Trigonometric) { m_regressionChanged[i] = true; } } } if (m_regressionChanged[series] || (m_seriesChecksum[series] != storeChecksumSeries)) { Model * seriesModel = modelForSeries(series); seriesModel->fit(this, series, m_regressionCoefficients[series], globalContext); m_regressionChanged[series] = false; m_seriesChecksum[series] = storeChecksumSeries; } return m_regressionCoefficients[series]; } double Store::doubleCastedNumberOfPairsOfSeries(int series) const { return DoublePairStore::numberOfPairsOfSeries(series); } float Store::maxValueOfColumn(int series, int i) const { float maxColumn = -FLT_MAX; for (int k = 0; k < numberOfPairsOfSeries(series); k++) { maxColumn = max(maxColumn, m_data[series][i][k]); } return maxColumn; } float Store::minValueOfColumn(int series, int i) const { float minColumn = FLT_MAX; for (int k = 0; k < numberOfPairsOfSeries(series); k++) { minColumn = min(minColumn, m_data[series][i][k]); } return minColumn; } double Store::squaredValueSumOfColumn(int series, int i) const { double result = 0; for (int k = 0; k < numberOfPairsOfSeries(series); k++) { result += m_data[series][i][k]*m_data[series][i][k]; } return result; } double Store::columnProductSum(int series) const { double result = 0; for (int k = 0; k < numberOfPairsOfSeries(series); k++) { result += m_data[series][0][k]*m_data[series][1][k]; } return result; } double Store::meanOfColumn(int series, int i) const { return numberOfPairsOfSeries(series) == 0 ? 0 : sumOfColumn(series, i)/numberOfPairsOfSeries(series); } double Store::varianceOfColumn(int series, int i) const { double mean = meanOfColumn(series, i); return squaredValueSumOfColumn(series, i)/numberOfPairsOfSeries(series) - mean*mean; } double Store::standardDeviationOfColumn(int series, int i) const { return std::sqrt(varianceOfColumn(series, i)); } double Store::covariance(int series) const { return columnProductSum(series)/numberOfPairsOfSeries(series) - meanOfColumn(series, 0)*meanOfColumn(series, 1); } double Store::slope(int series) const { return covariance(series)/varianceOfColumn(series, 0); } double Store::yIntercept(int series) const { return meanOfColumn(series, 1) - slope(series)*meanOfColumn(series, 0); } double Store::yValueForXValue(int series, double x, Poincare::Context * globalContext) { Model * model = m_regressionModels[(int)m_regressionTypes[series]]; double * coefficients = coefficientsForSeries(series, globalContext); return model->evaluate(coefficients, x); } double Store::xValueForYValue(int series, double y, Poincare::Context * globalContext) { Model * model = m_regressionModels[(int)m_regressionTypes[series]]; double * coefficients = coefficientsForSeries(series, globalContext); return model->levelSet(coefficients, xMin(), xGridUnit()/10.0, xMax(), y, globalContext); } double Store::correlationCoefficient(int series) const { double sd0 = standardDeviationOfColumn(series, 0); double sd1 = standardDeviationOfColumn(series, 1); return (sd0 == 0.0 || sd1 == 0.0) ? 1.0 : covariance(series)/(sd0*sd1); } double Store::squaredCorrelationCoefficient(int series) const { double cov = covariance(series); double v0 = varianceOfColumn(series, 0); double v1 = varianceOfColumn(series, 1); return (v0 == 0.0 || v1 == 0.0) ? 1.0 : cov*cov/(v0*v1); } }