#include #include #include #include #include #include #include extern "C" { #include } namespace Poincare { int Decimal::exponent(const char * integralPart, int integralPartLength, const char * fractionalPart, int fractionalPartLength, const char * exponent, int exponentLength, bool exponentNegative) { int base = 10; int exp = 0; for (int i = 0; i < exponentLength; i++) { exp *= base; exp += *exponent-'0'; exponent++; } if (exponentNegative) { exp = -exp; } const char * integralPartEnd = integralPart + integralPartLength; if (integralPart != nullptr) { while (*integralPart == '0' && integralPart < integralPartEnd) { integralPart++; } } exp += integralPartEnd-integralPart-1; if (integralPart == integralPartEnd) { const char * fractionalPartEnd = fractionalPart + fractionalPartLength; if (fractionalPart != nullptr) { while (*fractionalPart == '0' && fractionalPart < fractionalPartEnd) { fractionalPart++; exp--; } } if (fractionalPart == fractionalPartEnd) { exp += fractionalPartLength+1; } } return exp; } void removeZeroAtTheEnd(Integer & i) { if (i.isZero()) { return; } Integer base = Integer(10); IntegerDivision d = Integer::Division(i, base); while (d.remainder.isZero()) { i = d.quotient; d = Integer::Division(i, base); } } Integer Decimal::mantissa(const char * integralPart, int integralPartLength, const char * fractionalPart, int fractionalPartLength, bool negative) { Integer zero = Integer(0); Integer base = Integer(10); Integer numerator = Integer(integralPart, negative); for (int i = 0; i < fractionalPartLength; i++) { numerator = Integer::Multiplication(numerator, base); numerator = Integer::Addition(numerator, Integer(*fractionalPart-'0')); fractionalPart++; } return numerator; } Decimal::Decimal(Integer mantissa, int exponent) : m_mantissa(mantissa), m_exponent(exponent) { } template Decimal::Decimal(T f) { m_exponent = IEEE754::exponentBase10(f); int64_t mantissaf = std::round((double)f * std::pow((double)10.0, (double)(-m_exponent+PrintFloat::k_numberOfStoredSignificantDigits+1))); m_mantissa = Integer(mantissaf); } Expression::Type Decimal::type() const { return Type::Decimal; } Expression * Decimal::clone() const { return new Decimal(m_mantissa, m_exponent); } template Evaluation * Decimal::templatedApproximate(Context& context, Expression::AngleUnit angleUnit) const { T m = m_mantissa.approximate(); int numberOfDigits = Integer::numberOfDigitsWithoutSign(m_mantissa); return new Complex(m*std::pow((T)10.0, (T)(m_exponent-numberOfDigits+1))); } int Decimal::convertToText(char * buffer, int bufferSize, PrintFloat::Mode mode, int numberOfSignificantDigits) const { if (bufferSize == 0) { return -1; } buffer[bufferSize-1] = 0; int currentChar = 0; if (currentChar >= bufferSize-1) { return bufferSize-1; } if (m_mantissa.isZero()) { buffer[currentChar++] = '0'; buffer[currentChar] = 0; return currentChar; } int exponent = m_exponent; char tempBuffer[PrintFloat::k_numberOfStoredSignificantDigits+1]; // Round the integer if m_mantissa > 10^numberOfSignificantDigits-1 Integer absMantissa = m_mantissa; absMantissa.setNegative(false); int numberOfDigitsInMantissa = Integer::numberOfDigitsWithoutSign(m_mantissa); if (numberOfDigitsInMantissa > numberOfSignificantDigits) { IntegerDivision d = Integer::Division(absMantissa, Integer((int64_t)std::pow(10.0, numberOfDigitsInMantissa - numberOfSignificantDigits))); absMantissa = d.quotient; if (Integer::NaturalOrder(d.remainder, Integer((int64_t)(5.0*std::pow(10.0, numberOfDigitsInMantissa-numberOfSignificantDigits-1)))) >= 0) { absMantissa = Integer::Addition(absMantissa, Integer(1)); // if 9999 was rounded to 10000, we need to update exponent and mantissa if (Integer::numberOfDigitsWithoutSign(absMantissa) > numberOfSignificantDigits) { exponent++; absMantissa = Integer::Division(absMantissa, Integer(10)).quotient; } } removeZeroAtTheEnd(absMantissa); } int mantissaLength = absMantissa.writeTextInBuffer(tempBuffer, PrintFloat::k_numberOfStoredSignificantDigits+1); if (strcmp(tempBuffer, "undef") == 0) { currentChar = strlcpy(buffer, tempBuffer, bufferSize); return currentChar; } /* We force scientific mode if the number of digits before the dot is superior * to the number of significant digits (ie with 4 significant digits, * 12345 -> 1.235E4 or 12340 -> 1.234E4). */ bool forceScientificMode = mode == PrintFloat::Mode::Scientific || exponent >= numberOfSignificantDigits; int numberOfRequiredDigits = mantissaLength; if (!forceScientificMode) { numberOfRequiredDigits = mantissaLength > exponent ? mantissaLength : exponent; numberOfRequiredDigits = exponent < 0 ? mantissaLength-exponent : numberOfRequiredDigits; } if (currentChar >= bufferSize-1) { return bufferSize-1; } if (m_mantissa.isNegative()) { buffer[currentChar++] = '-'; if (currentChar >= bufferSize-1) { return bufferSize-1; } } /* Case 0: Scientific mode. Three cases: * - the user chooses the scientific mode * - the exponent is too big compared to the number of significant digits, so * we force the scientific mode to avoid inventing digits * - the number would be too long if we print it as a natural decimal */ if (numberOfRequiredDigits > PrintFloat::k_numberOfStoredSignificantDigits || forceScientificMode) { if (mantissaLength == 1) { currentChar += strlcpy(buffer+currentChar, tempBuffer, bufferSize-currentChar); } else { currentChar++; int decimalMarkerPosition = currentChar; if (currentChar >= bufferSize-1) { return bufferSize-1; } currentChar += strlcpy(buffer+currentChar, tempBuffer, bufferSize-currentChar); buffer[decimalMarkerPosition-1] = buffer[decimalMarkerPosition]; buffer[decimalMarkerPosition] = '.'; } if (exponent == 0) { return currentChar; } if (currentChar >= bufferSize-1) { return bufferSize-1; } buffer[currentChar++] = Ion::Charset::Exponent; currentChar += Integer(exponent).writeTextInBuffer(buffer+currentChar, bufferSize-currentChar); return currentChar; } /* Case 1: Decimal mode */ int deltaCharMantissa = exponent < 0 ? -exponent+1 : 0; strlcpy(buffer+currentChar+deltaCharMantissa, tempBuffer, bufferSize-deltaCharMantissa-currentChar); if (exponent < 0) { for (int i = 0; i <= -exponent; i++) { if (currentChar >= bufferSize-1) { return bufferSize-1; } if (i == 1) { buffer[currentChar++] = '.'; continue; } buffer[currentChar++] = '0'; } } currentChar += mantissaLength; if (exponent >= 0 && exponent < mantissaLength-1) { if (currentChar+1 >= bufferSize-1) { return bufferSize-1; } int decimalMarkerPosition = m_mantissa.isNegative() ? exponent + 1 : exponent; for (int i = currentChar-1; i > decimalMarkerPosition; i--) { buffer[i+1] = buffer[i]; } if (currentChar >= bufferSize-1) { return bufferSize-1; } buffer[decimalMarkerPosition+1] = '.'; currentChar++; } if (exponent >= 0 && exponent > mantissaLength-1) { int endMarkerPosition = m_mantissa.isNegative() ? exponent+1 : exponent; for (int i = currentChar-1; i < endMarkerPosition; i++) { if (currentChar+1 >= bufferSize-1) { return bufferSize-1; } buffer[currentChar++] = '0'; } } if (currentChar >= bufferSize-1) { return bufferSize-1; } buffer[currentChar] = 0; return currentChar; } int Decimal::writeTextInBuffer(char * buffer, int bufferSize, PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const { return convertToText(buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits); } bool Decimal::needParenthesisWithParent(const Expression * e) const { if (sign() == Sign::Positive) { return false; } Type types[] = {Type::Addition, Type::Subtraction, Type::Opposite, Type::Multiplication, Type::Division, Type::Power, Type::Factorial}; return e->isOfType(types, 7); } ExpressionLayout * Decimal::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const { char buffer[k_maxBufferSize]; int numberOfChars = convertToText(buffer, k_maxBufferSize, floatDisplayMode, numberOfSignificantDigits); return LayoutEngine::createStringLayout(buffer, numberOfChars); } Expression * Decimal::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } // Do not reduce decimal to rational if the exponent is too big or too small. if (m_exponent > k_maxDoubleExponent || m_exponent < -k_maxDoubleExponent) { return this; // TODO: return new Infinite() ? new Rational(0) ? } Integer numerator = m_mantissa; removeZeroAtTheEnd(numerator); int numberOfDigits = Integer::numberOfDigitsWithoutSign(numerator); Integer denominator = Integer(1); if (m_exponent >= numberOfDigits-1) { numerator = Integer::Multiplication(numerator, Integer::Power(Integer(10), Integer(m_exponent-numberOfDigits+1))); } else { denominator = Integer::Power(Integer(10), Integer(numberOfDigits-1-m_exponent)); } return replaceWith(new Rational(numerator, denominator), true); } Expression * Decimal::shallowBeautify(Context & context, AngleUnit angleUnit) { if (m_mantissa.isNegative()) { m_mantissa.setNegative(false); Opposite * o = new Opposite(this, true); return replaceWith(o, true); } return this; } int Decimal::simplificationOrderSameType(const Expression * e, bool canBeInterrupted) const { assert(e->type() == Type::Decimal); const Decimal * other = static_cast(e); if (sign() == Sign::Negative && other->sign() == Sign::Positive) { return -1; } if (sign() == Sign::Positive && other->sign() == Sign::Negative) { return 1; } assert(sign() == other->sign()); int unsignedComparison = 0; if (exponent() < other->exponent()) { unsignedComparison = -1; } else if (exponent() > other->exponent()) { unsignedComparison = 1; } else { assert(exponent() == other->exponent()); unsignedComparison = Integer::NaturalOrder(mantissa(), other->mantissa()); } return ((int)sign())*unsignedComparison; } template Decimal::Decimal(double); template Decimal::Decimal(float); }