#include #include #include extern "C" { #include } #include namespace Poincare { Expression::Type ArcTangent::type() const { return Type::ArcTangent; } Expression * ArcTangent::clone() const { ArcTangent * a = new ArcTangent(m_operands, true); return a; } Expression * ArcTangent::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING if (operand(0)->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif return Trigonometry::shallowReduceInverseFunction(this, context, angleUnit); } template std::complex ArcTangent::computeOnComplex(const std::complex c, AngleUnit angleUnit) { std::complex result = std::atan(c); /* atan has a branch cut on ]-inf*i, -i[U]i, +inf*i[: it is then multivalued * on this cut. We followed the convention chosen by the lib c++ of llvm on * ]-i+0, -i*inf+0[ (warning: atan takes the other side of the cut values on * ]-i+0, -i*inf+0[) and choose the values on ]-inf*i, -i[ to comply with * atan(-x) = -atan(x) and sin(arctan(x)) = x/sqrt(1+x^2). */ if (c.real() == 0 && c.imag() < -1) { result.real(-result.real()); // other side of the cut } result = Trigonometry::RoundToMeaningfulDigits(result); return Trigonometry::ConvertRadianToAngleUnit(result, angleUnit); } }