#include #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { #include #include } #include "layout/baseline_relative_layout.h" #include "layout/horizontal_layout.h" #include "layout/parenthesis_layout.h" #include "layout/string_layout.h" namespace Poincare { Expression::Type Logarithm::type() const { return Type::Logarithm; } Expression * Logarithm::clone() const { return new Logarithm(operands(), numberOfOperands(), true); } template Complex Logarithm::computeOnComplex(const Complex c, AngleUnit angleUnit) { if (c.b() != 0) { return Complex::Float(NAN); } return Complex::Float(std::log10(c.a())); } Expression * Logarithm::simpleShallowReduce(Context & context, AngleUnit angleUnit) { Expression * op = editableOperand(0); if (op->sign() == Sign::Negative || (numberOfOperands() == 2 && operand(1)->sign() == Sign::Negative)) { return replaceWith(new Undefined(), true); } // log(x,x)->1 if (numberOfOperands() == 2 && op->isIdenticalTo(operand(1))) { return replaceWith(new Rational(1), true); } if (op->type() == Type::Rational) { const Rational * r = static_cast(operand(0)); // log(0) = undef if (r->isZero()) { return replaceWith(new Undefined(), true); } // log(1) = 0; if (r->isOne()) { return replaceWith(new Rational(0), true); } // log(10) ->1 if (numberOfOperands() == 1 && r->isTen()) { return replaceWith(new Rational(1), true); } } return this; } Expression * Logarithm::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } Expression * op = editableOperand(0); #if MATRIX_EXACT_REDUCING if (numberOfOperands() == 1 && op->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } if (numberOfOperands() == 2 && (op->type() == Type::Matrix || operand(1)->type() == Type::Matrix)) { return replaceWith(new Undefined(), true); } #endif Expression * f = simpleShallowReduce(context, angleUnit); if (f != this) { return f; } /* We do not apply some rules if the parent node is a power of b. In this * case there is a simplication of form e^ln(3^(1/2))->3^(1/2) */ bool letLogAtRoot = parentIsAPowerOfSameBase(); // log(x^y, b)->y*log(x, b) if x>0 if (!letLogAtRoot && op->type() == Type::Power && op->operand(0)->sign() == Sign::Positive) { Power * p = static_cast(op); Expression * x = p->editableOperand(0); Expression * y = p->editableOperand(1); p->detachOperands(); replaceOperand(p, x, true); Expression * newLog = shallowReduce(context, angleUnit); newLog = newLog->replaceWith(new Multiplication(y, newLog->clone(), false), true); return newLog->shallowReduce(context, angleUnit); } // log(x*y, b)->log(x,b)+log(y, b) if x,y>0 if (!letLogAtRoot && op->type() == Type::Multiplication) { Addition * a = new Addition(); for (int i = 0; inumberOfOperands()-1; i++) { Expression * factor = op->editableOperand(i); if (factor->sign() == Sign::Positive) { Expression * newLog = clone(); static_cast(op)->removeOperand(factor, false); newLog->replaceOperand(newLog->editableOperand(0), factor, true); a->addOperand(newLog); newLog->shallowReduce(context, angleUnit); } } if (a->numberOfOperands() > 0) { op->shallowReduce(context, angleUnit); Expression * reducedLastLog = shallowReduce(context, angleUnit); reducedLastLog->replaceWith(a, false); a->addOperand(reducedLastLog); return a->shallowReduce(context, angleUnit); } else { delete a; } } // log(r) = a0log(p0)+a1log(p1)+... with r = p0^a0*p1^a1*... (Prime decomposition) if (!letLogAtRoot && op->type() == Type::Rational) { const Rational * r = static_cast(operand(0)); Expression * n = splitInteger(r->numerator(), false, context, angleUnit); Expression * d = splitInteger(r->denominator(), true, context, angleUnit); Addition * a = new Addition(n, d, false); replaceWith(a, true); return a->shallowReduce(context, angleUnit); } return this; } bool Logarithm::parentIsAPowerOfSameBase() const { // We look for expressions of types e^ln(x) or e^(ln(x)) where ln is this const Expression * parentExpression = parent(); bool thisIsPowerExponent = parentExpression->type() == Type::Power ? parentExpression->operand(1) == this : false; if (parentExpression->type() == Type::Parenthesis) { const Expression * parentParentExpression = parentExpression->parent(); if (parentExpression == nullptr) { return false; } thisIsPowerExponent = parentParentExpression->type() == Type::Power ? parentParentExpression->operand(1) == parentExpression : false; parentExpression = parentParentExpression; } if (thisIsPowerExponent) { const Expression * powerOperand0 = parentExpression->operand(0); if (numberOfOperands() == 1) { if (powerOperand0->type() == Type::Rational && static_cast(powerOperand0)->isTen()) { return true; } } if (numberOfOperands() == 2) { if (powerOperand0->isIdenticalTo(operand(1))){ return true; } } } return false; } Expression * Logarithm::splitInteger(Integer i, bool isDenominator, Context & context, AngleUnit angleUnit) { assert(!i.isZero()); assert(!i.isNegative()); if (i.isOne()) { return new Rational(0); } assert(!i.isOne()); Integer factors[Arithmetic::k_maxNumberOfPrimeFactors]; Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors]; Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors); if (coefficients[0].isMinusOne()) { /* We could not break i in prime factor (either it might take too many * factors or too much time). */ Expression * e = clone(); e->replaceOperand(e->operand(0), new Rational(i), true); if (!isDenominator) { return e; } Multiplication * m = new Multiplication(new Rational(-1), e, false); return m; } Addition * a = new Addition(); int index = 0; while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) { if (isDenominator) { coefficients[index].setNegative(true); } Expression * e = clone(); e->replaceOperand(e->operand(0), new Rational(factors[index]), true); Multiplication * m = new Multiplication(new Rational(coefficients[index]), e, false); static_cast(e)->simpleShallowReduce(context, angleUnit); a->addOperand(m); m->shallowReduce(context, angleUnit); index++; } return a; } Expression * Logarithm::shallowBeautify(Context & context, AngleUnit angleUnit) { Symbol e = Symbol(Ion::Charset::Exponential); const Expression * op = operand(0); Rational one(1); if (numberOfOperands() == 2 && (operand(1)->isIdenticalTo(&e) || operand(1)->isIdenticalTo(&one))) { detachOperand(op); Expression * nl = operand(1)->isIdenticalTo(&e) ? static_cast(new NaperianLogarithm(op, false)) : static_cast (new Logarithm(op, false)); return replaceWith(nl, true); } return this; } template Expression * Logarithm::templatedApproximate(Context& context, AngleUnit angleUnit) const { if (numberOfOperands() == 1) { return ApproximationEngine::map(this, context, angleUnit, computeOnComplex); } Expression * x = operand(0)->approximate(context, angleUnit); Expression * n = operand(1)->approximate(context, angleUnit); Complex result = Complex::Float(NAN); if (x->type() == Type::Complex && n->type() == Type::Complex) { Complex * xc = static_cast *>(x); Complex * nc = static_cast *>(n); result = Division::compute(computeOnComplex(*xc, angleUnit), computeOnComplex(*nc, angleUnit)); } delete x; delete n; return new Complex(result); } ExpressionLayout * Logarithm::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const { assert(floatDisplayMode != FloatDisplayMode::Default); assert(complexFormat != ComplexFormat::Default); if (numberOfOperands() == 1) { return LayoutEngine::createPrefixLayout(this, floatDisplayMode, complexFormat, "log"); } ExpressionLayout * childrenLayouts[2]; childrenLayouts[0] = new BaselineRelativeLayout(new StringLayout("log", strlen("log")), operand(1)->createLayout(floatDisplayMode, complexFormat), BaselineRelativeLayout::Type::Subscript); childrenLayouts[1] = new ParenthesisLayout(operand(0)->createLayout(floatDisplayMode, complexFormat)); return new HorizontalLayout(childrenLayouts, 2); } }