extern "C" { #include #include #include } #include #include #include #include #include #include #include "layout/fraction_layout.h" #include namespace Poincare { Expression::Type Division::type() const { return Type::Division; } Expression * Division::clone() const { return new Division(m_operands, true); } bool Division::needParenthesisWithParent(const Expression * e) const { Type types[] = {Type::Division, Type::Power, Type::Factorial}; return e->isOfType(types, 3); } Expression * Division::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } Power * p = new Power(operand(1), new Rational(-1), false); Multiplication * m = new Multiplication(operand(0), p, false); detachOperands(); p->shallowReduce(context, angleUnit); replaceWith(m, true); return m->shallowReduce(context, angleUnit); } template Complex Division::compute(const Complex c, const Complex d) { /* We want to avoid multiplies in the middle of the calculation that could * overflow. * aa, ab, ba, bb, min, max = |d.a| <= |d.b| ? (c.a, c.b, -c.a, c.b, d.a, d.b) * : (c.b, c.a, c.b, -c.a, d.b, d.a) * c c.a+c.b*i d.a-d.b*i 1/max (c.a+c.b*i) * (d.a-d.b*i) / max * - == --------- * --------- * ----- == ------------------------------- * d d.a+d.b*i d.a-d.b*i 1/max (d.a+d.b*i) * (d.a-d.b*i) / max * (c.a*d.a - c.a*d.b*i + c.b*i*d.a - c.b*i*d.b*i) / max * == ----------------------------------------------------- * (d.a*d.a - d.a*d.b*i + d.b*i*d.a - d.b*i*d.b*i) / max * (c.a*d.a - c.b*d.b*i^2 + c.b*d.b*i - c.a*d.a*i) / max * == ----------------------------------------------------- * (d.a*d.a - d.b*d.b*i^2) / max * (c.a*d.a/max + c.b*d.b/max) + (c.b*d.b/max - c.a*d.a/max)*i * == ----------------------------------------------------------- * d.a^2/max + d.b^2/max * aa*min/max + ab*max/max bb*min/max + ba*max/max * == ----------------------- + -----------------------*i * min^2/max + max^2/max min^2/max + max^2/max * min/max*aa + ab min/max*bb + ba * == ----------------- + -----------------*i * min/max*min + max min/max*min + max * |min| <= |max| => |min/max| <= 1 * => |min/max*x| <= |x| * => |min/max*x+y| <= |x|+|y| * So the calculation is guaranteed to not overflow until the last divides as * long as none of the input values have the representation's maximum exponent. * Plus, the method does not propagate any error on real inputs: temp = 0, * norm = d.a and then result = c.a/d.a. */ T aa = c.a(), ab = c.b(), ba = -aa, bb = ab; T min = d.a(), max = d.b(); if (std::fabs(max) < std::fabs(min)) { T temp = min; min = max; max = temp; temp = aa; aa = ab; ab = temp; temp = ba; ba = bb; bb = temp; } T temp = min/max; T norm = temp*min + max; return Complex::Cartesian((temp*aa + ab) / norm, (temp*bb + ba) / norm); } ExpressionLayout * Division::privateCreateLayout(FloatDisplayMode floatDisplayMode, ComplexFormat complexFormat) const { assert(floatDisplayMode != FloatDisplayMode::Default); assert(complexFormat != ComplexFormat::Default); const Expression * numerator = operand(0)->type() == Type::Parenthesis ? operand(0)->operand(0) : operand(0); const Expression * denominator = operand(1)->type() == Type::Parenthesis ? operand(1)->operand(0) : operand(1); return new FractionLayout(numerator->createLayout(floatDisplayMode, complexFormat), denominator->createLayout(floatDisplayMode, complexFormat)); } template Matrix * Division::computeOnComplexAndMatrix(const Complex * c, const Matrix * n) { Matrix * inverse = n->createInverse(); if (inverse == nullptr) { return nullptr; } Matrix * result = Multiplication::computeOnComplexAndMatrix(c, inverse); delete inverse; return result; } template Matrix * Division::computeOnMatrices(const Matrix * m, const Matrix * n) { if (m->numberOfColumns() != n->numberOfColumns()) { return nullptr; } Matrix * inverse = n->createInverse(); if (inverse == nullptr) { return nullptr; } Matrix * result = Multiplication::computeOnMatrices(m, inverse); delete inverse; return result; } }