#include #include #include #include #include #include "../equation_store.h" #include "../../../poincare/test/helper.h" using namespace Poincare; namespace Solver { void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables, const char * solutions[], int numberOfSolutions) { char buffer[200]; GlobalContext globalContext; EquationStore equationStore; int index = 0; while (equations[index] != 0) { Shared::ExpressionModel * e = equationStore.addEmptyModel(); strlcpy(buffer, equations[index++], 200); translate_in_special_chars(buffer); e->setContent(buffer); } EquationStore::Error err = equationStore.exactSolve(&globalContext); assert(err == error); if (err != EquationStore::Error::NoError) { return; } assert(equationStore.type() == type); assert(equationStore.numberOfSolutions() == numberOfSolutions); if (numberOfSolutions == INT_MAX) { return; } if (type == EquationStore::Type::LinearSystem) { for (int i = 0; i < numberOfSolutions; i++) { assert(equationStore.variableAtIndex(i) == variables[i]); } } else { assert(equationStore.variableAtIndex(0) == variables[0]); } int n = type == EquationStore::Type::PolynomialMonovariable ? numberOfSolutions+1 : numberOfSolutions; // Check Delta for PolynomialMonovariable for (int i = 0; i < n; i++) { equationStore.exactSolutionLayoutAtIndex(i, true)->writeTextInBuffer(buffer, 200); translate_in_ASCII_chars(buffer); assert(strcmp(buffer, solutions[i]) == 0); } } void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) { char buffer[200]; GlobalContext globalContext; EquationStore equationStore; Shared::ExpressionModel * e = equationStore.addEmptyModel(); strlcpy(buffer, equations, 200); translate_in_special_chars(buffer); e->setContent(buffer); EquationStore::Error err = equationStore.exactSolve(&globalContext); assert(err == EquationStore::Error::RequireApproximateSolution); equationStore.setIntervalBound(0, xMin); equationStore.setIntervalBound(1, xMax); equationStore.approximateSolve(&globalContext); assert(equationStore.numberOfSolutions() == numberOfSolutions); assert(equationStore.variableAtIndex(0) == variable); for (int i = 0; i < numberOfSolutions; i++) { assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5); } assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions); } QUIZ_CASE(equation_solve) { // x+y+z+a+b+c+d = 0 const char * equations0[] = {"x+y+z+a+b+c+d=0", 0}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, nullptr, nullptr, 0); // x^2+y = 0 const char * equations1[] = {"x^2+y=0", 0}; assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, nullptr, nullptr, 0); // cos(x) = 0 const char * equations2[] = {"cos(x)=0", 0}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, nullptr, nullptr, 0); // 2 = 0 const char * equations3[] = {"2=0", 0}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, 0); // 0 = 0 const char * equations4[] = {"0=0", 0}; assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX); // x-x+2 = 0 const char * equations5[] = {"x-x+2=0", 0}; assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, 0); // x-x= 0 const char * equations6[] = {"x-x=0", 0}; assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX); // 2x+3=4 const char * equations7[] = {"2x+3=4", 0}; const char * solutions7[] = {"(1)/(2)"}; assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "x", solutions7, 1); // 3x^2-4x+4=2 const char * equations8[] = {"3*x^2-4x+4=2", 0}; const char * solutions8[] = {"(2-R(2)*I)/(3)","(2+R(2)*I)/(3)", "-8"}; assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions8, 2); // 2*x^2-4*x+4=3 const char * equations9[] = {"2*x^2-4*x+4=3", 0}; const char * solutions9[] = {"(2-R(2))/(2)","(2+R(2))/(2)", "8"}; assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions9, 2); // 2*x^2-4*x+2=0 const char * equations10[] = {"2*x^2-4*x+2=0", 0}; const char * solutions10[] = {"1", "0"}; assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions10, 1); // x^2+x+1=3*x^2+pi*x-R(5) const char * equations11[] = {"x^2+x+1=3*x^2+P*x-R(5)", 0}; const char * solutions11[] = {"(1-P+R(9+8*R(5)-2*P+P^(2)))/(4)", "(1-P-R(9+8*R(5)-2*P+P^(2)))/(4)", "9+8*R(5)-2*P+P^(2)"}; assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", solutions11, 2); // TODO // x^3 - 4x^2 + 6x - 24 = 0 //const char * equations10[] = {"2*x^2-4*x+4=3", 0}; //assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, "x", {"4", "I*R(6)", "-I*R(6)", "-11616"}, 3); //x^3+x^2+1=0 // x^3-3x-2=0 // Linear System const char * equations12[] = {"x+y=0", 0}; assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "", nullptr, INT_MAX); const char * equations13[] = {"x+y=0", "3x+y=-5", 0}; const char * solutions13[] = {"-(5)/(2)", "(5)/(2)"}; assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "xy", solutions13, 2); const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-P=0", 0}; const char * solutions14[] = {"(-20-P)/(8)", "(20+P)/(8)", "(P)/(4)"}; assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, "xyz", solutions14, 3); // Monovariable non-polynomial equation double solutions15[] = {-90.0, 90.0}; assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, 'x', solutions15, 2, false); double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0}; assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, 'x', solutions16, 10, true); double solutions17[] = {0}; assert_equation_approximate_solve_to("R(y)=0", -900.0, 1000.0, 'y', solutions17, 1, false); } }