#include #include #include extern "C" { #include } #include namespace Poincare { Expression::Type ArcCosine::type() const { return Type::ArcCosine; } Expression * ArcCosine::clone() const { ArcCosine * a = new ArcCosine(m_operands, true); return a; } Expression * ArcCosine::shallowReduce(Context& context, AngleUnit angleUnit) { Expression * e = Expression::shallowReduce(context, angleUnit); if (e != this) { return e; } #if MATRIX_EXACT_REDUCING if (operand(0)->type() == Type::Matrix) { return SimplificationEngine::map(this, context, angleUnit); } #endif return Trigonometry::shallowReduceInverseFunction(this, context, angleUnit); } template std::complex ArcCosine::computeOnComplex(const std::complex c, AngleUnit angleUnit) { std::complex result = std::acos(c); /* acos has a branch cut on ]-inf, -1[U]1, +inf[: it is then multivalued on * this cut. We followed the convention chosen by the lib c++ of llvm on * ]-inf+0i, -1+0i[ (warning: acos takes the other side of the cut values on * ]-inf-0i, -1-0i[) and choose the values on ]1+0i, +inf+0i[ to comply with * acos(-x) = Pi - acos(x) and tan(arccos(x)) = sqrt(1-x^2)/x. */ if (c.imag() == 0 && c.real() > 1) { result.imag(-result.imag()); // other side of the cut } result = Trigonometry::RoundToMeaningfulDigits(result); return Trigonometry::ConvertRadianToAngleUnit(result, angleUnit); } }