#include "equation_store.h" #include "../shared/poincare_helpers.h" #include using namespace Poincare; using namespace Shared; namespace Solver { EquationStore::EquationStore() : m_type(Type::LinearSystem), m_numberOfSolutions(0), m_exactSolutionExactLayouts{}, m_exactSolutionApproximateLayouts{} { } EquationStore::~EquationStore() { tidySolution(); } Equation * EquationStore::emptyModel() { static Equation e; return &e; } void EquationStore::setModelAtIndex(Shared::ExpressionModel * e, int i) { m_equations[i] = *(static_cast(e));; } void EquationStore::tidy() { ExpressionModelStore::tidy(); tidySolution(); } Poincare::ExpressionLayout * EquationStore::exactSolutionLayoutAtIndex(int i, bool exactLayout) { assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable))); if (exactLayout) { return m_exactSolutionExactLayouts[i]; } else { return m_exactSolutionApproximateLayouts[i]; } } double EquationStore::intervalBound(int index) const { assert(m_type == Type::Monovariable && index >= 0 && index < 2); return m_intervalApproximateSolutions[index]; } void EquationStore::setIntervalBound(int index, double value) { assert(m_type == Type::Monovariable && index >= 0 && index < 2); m_intervalApproximateSolutions[index] = value; if (m_intervalApproximateSolutions[0] > m_intervalApproximateSolutions[1]) { if (index == 0) { m_intervalApproximateSolutions[1] = m_intervalApproximateSolutions[0]+1; } else { m_intervalApproximateSolutions[0] = m_intervalApproximateSolutions[1]-1; } } } double EquationStore::approximateSolutionAtIndex(int i) { assert(m_type == Type::Monovariable && i >= 0 && i < m_numberOfSolutions); return m_approximateSolutions[i]; } bool EquationStore::haveMoreApproximationSolutions(Context * context) { if (m_numberOfSolutions < k_maxNumberOfEquations) { return false; } double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision; return !std::isnan(definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], m_approximateSolutions[m_numberOfSolutions-1], step, m_intervalApproximateSolutions[1], *context, Preferences::sharedPreferences()->angleUnit())); } void EquationStore::approximateSolve(Poincare::Context * context) { assert(m_variables[0] != 0 && m_variables[1] == 0); assert(m_type == Type::Monovariable); m_numberOfSolutions = 0; double start = m_intervalApproximateSolutions[0]; double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision; for (int i = 0; i < k_maxNumberOfApproximateSolutions; i++) { m_approximateSolutions[i] = definedModelAtIndex(0)->standardForm(context)->nextRoot(m_variables[0], start, step, m_intervalApproximateSolutions[1], *context, Preferences::sharedPreferences()->angleUnit()); if (std::isnan(m_approximateSolutions[i])) { break; } else { start = m_approximateSolutions[i]; m_numberOfSolutions++; } } } EquationStore::Error EquationStore::exactSolve(Poincare::Context * context) { tidySolution(); /* 0- Get unknown variables */ m_variables[0] = 0; int numberOfVariables = 0; for (int i = 0; i < numberOfDefinedModels(); i++) { if (definedModelAtIndex(i)->standardForm(context) == nullptr) { return Error::EquationUndefined; } numberOfVariables = definedModelAtIndex(i)->standardForm(context)->getVariables(Symbol::isVariableSymbol, m_variables); if (numberOfVariables < 0) { return Error::TooManyVariables; } } /* 1- Linear System? */ /* Create matrix coefficients and vector constants as: * coefficients*(x y z ...) = constants */ Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables]; Expression * constants[k_maxNumberOfEquations]; bool isLinear = true; // Invalid the linear system if one equation is non-linear for (int i = 0; i < numberOfDefinedModels(); i++) { isLinear = isLinear && definedModelAtIndex(i)->standardForm(context)->getLinearCoefficients(m_variables, coefficients[i], &constants[i], *context, Preferences::sharedPreferences()->angleUnit()); // Clean allocated memory if the system is not linear if (!isLinear) { for (int j = 0; j < i; j++) { for (int k = 0; k < numberOfVariables; k++) { delete coefficients[j][k]; } delete constants[j]; } if (numberOfDefinedModels() > 1 || numberOfVariables > 1) { return Error::NonLinearSystem; } else { break; } } } /* Initialize result */ Expression * exactSolutions[k_maxNumberOfExactSolutions]; for (int i = 0; i < k_maxNumberOfExactSolutions; i++) { exactSolutions[i] = nullptr; } EquationStore::Error error; if (isLinear) { m_type = Type::LinearSystem; error = resolveLinearSystem(exactSolutions, coefficients, constants, context); } else { /* 2- Polynomial & Monovariable? */ assert(numberOfVariables == 1 && numberOfDefinedModels() == 1); char x = m_variables[0]; Expression * polynomialCoefficients[Expression::k_maxNumberOfPolynomialCoefficients]; int degree = definedModelAtIndex(0)->standardForm(context)->getPolynomialCoefficients(x, polynomialCoefficients, *context, Preferences::sharedPreferences()->angleUnit()); if (degree == 2) { /* Polynomial degree <= 2*/ m_type = Type::PolynomialMonovariable; error = oneDimensialPolynomialSolve(exactSolutions, polynomialCoefficients, degree, context); } else { /* 3- Monovariable non-polynomial or polynomial with degree > 2 */ m_type = Type::Monovariable; m_intervalApproximateSolutions[0] = -10; m_intervalApproximateSolutions[1] = 10; return Error::RequireApproximateSolution; } } /* Turn the results in layouts */ for (int i = 0; i < k_maxNumberOfExactSolutions; i++) { if (exactSolutions[i]) { m_exactSolutionExactLayouts[i] = PoincareHelpers::CreateLayout(exactSolutions[i]); Expression * approximate = PoincareHelpers::Approximate(exactSolutions[i], *context); m_exactSolutionApproximateLayouts[i] = PoincareHelpers::CreateLayout(approximate); /* Check for identity between exact and approximate layouts */ char exactBuffer[Shared::ExpressionModel::k_expressionBufferSize]; char approximateBuffer[Shared::ExpressionModel::k_expressionBufferSize]; m_exactSolutionExactLayouts[i]->writeTextInBuffer(exactBuffer, Shared::ExpressionModel::k_expressionBufferSize); m_exactSolutionApproximateLayouts[i]->writeTextInBuffer(approximateBuffer, Shared::ExpressionModel::k_expressionBufferSize); m_exactSolutionIdentity[i] = strcmp(exactBuffer, approximateBuffer) == 0; /* Check for equality between exact and approximate layouts */ if (!m_exactSolutionIdentity[i]) { m_exactSolutionEquality[i] = exactSolutions[i]->isEqualToItsApproximationLayout(approximate, Shared::ExpressionModel::k_expressionBufferSize, Preferences::sharedPreferences()->angleUnit(), Preferences::sharedPreferences()->displayMode(), Preferences::sharedPreferences()->numberOfSignificantDigits(), *context); } delete approximate; delete exactSolutions[i]; } } return error; } EquationStore::Error EquationStore::resolveLinearSystem(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables], Expression * constants[k_maxNumberOfEquations], Context * context) { Expression::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit(); int n = strlen(m_variables); // n unknown variables int m = numberOfDefinedModels(); // m equations /* Create the matrix (A | b) for the equation Ax=b */ const Expression ** operandsAb = new const Expression * [(n+1)*m]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { operandsAb[i*(n+1)+j] = coefficients[i][j]; } operandsAb[i*(n+1)+n] = constants[i]; } Matrix * Ab = new Matrix(operandsAb, m, n+1, false); delete [] operandsAb; // Compute the rank of (A | b) int rankAb = Ab->rank(*context, angleUnit, true); // Initialize the number of solutions m_numberOfSolutions = INT_MAX; /* If the matrix has one null row except the last column, the system is * inconsistent (equivalent to 0 = x with x non-null */ for (int j = m-1; j >= 0; j--) { bool rowWithNullCoefficients = true; for (int i = 0; i < n; i++) { if (!Ab->matrixOperand(j, i)->isRationalZero()) { rowWithNullCoefficients = false; break; } } if (rowWithNullCoefficients && !Ab->matrixOperand(j, n)->isRationalZero()) { m_numberOfSolutions = 0; } } if (m_numberOfSolutions > 0) { // if rank(A | b) < n, the system has an infinite number of solutions if (rankAb == n && n > 0) { // Otherwise, the system has n solutions which correspond to the last column m_numberOfSolutions = n; for (int i = 0; i < m_numberOfSolutions; i++) { Expression * sol = Ab->matrixOperand(i,n); exactSolutions[i] = sol; Ab->detachOperand(sol); PoincareHelpers::Simplify(&exactSolutions[i], *context); } } } delete Ab; return Error::NoError; } EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[Expression::k_maxNumberOfPolynomialCoefficients], int degree, Context * context) { /* Equation ax^2+bx+c = 0 */ assert(degree == 2); // Compute 4ac Expression * deltaSubOperand[3] = {new Rational(4), coefficients[0]->clone(), coefficients[2]->clone()}; // Compute delta = b*b-4ac Expression * delta = new Subtraction(new Power(coefficients[1]->clone(), new Rational(2), false), new Multiplication(deltaSubOperand, 3, false), false); PoincareHelpers::Simplify(&delta, *context); if (delta->isRationalZero()) { // if delta = 0, x0=x1= -b/(2a) exactSolutions[0] = new Division(new Opposite(coefficients[1], false), new Multiplication(new Rational(2), coefficients[2], false), false); m_numberOfSolutions = 1; } else { // x0 = (-b-sqrt(delta))/(2a) exactSolutions[0] = new Division(new Subtraction(new Opposite(coefficients[1]->clone(), false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]->clone(), false), false); // x1 = (-b+sqrt(delta))/(2a) exactSolutions[1] = new Division(new Addition(new Opposite(coefficients[1], false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2], false), false); m_numberOfSolutions = 2; } exactSolutions[m_numberOfSolutions] = delta; delete coefficients[0]; for (int i = 0; i < m_numberOfSolutions; i++) { PoincareHelpers::Simplify(&exactSolutions[i], *context); } return Error::NoError; #if 0 if (degree == 3) { Expression * a = coefficients[3]; Expression * b = coefficients[2]; Expression * c = coefficients[1]; Expression * d = coefficients[0]; // Delta = b^2*c^2+18abcd-27a^2*d^2-4ac^3-4db^3 Expression * mult0Operands[2] = {new Power(b->clone(), new Rational(2), false), new Power(c->clone(), new Rational(2), false)}; Expression * mult1Operands[5] = {new Rational(18), a->clone(), b->clone(), c->clone(), d->clone()}; Expression * mult2Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), new Power(d->clone(), new Rational(2), false)}; Expression * mult3Operands[3] = {new Rational(-4), a->clone(), new Power(c->clone(), new Rational(3), false)}; Expression * mult4Operands[3] = {new Rational(-4), d->clone(), new Power(b->clone(), new Rational(3), false)}; Expression * add0Operands[5] = {new Multiplication(mult0Operands, 2, false), new Multiplication(mult1Operands, 5, false), new Multiplication(mult2Operands, 3, false), new Multiplication(mult3Operands, 3, false), new Multiplication(mult4Operands, 3, false)}; Expression * delta = new Addition(add0Operands, 5, false); PoincareHelpers::Simplify(&delta, *context); // Delta0 = b^2-3ac Expression * mult5Operands[3] = {new Rational(3), a->clone(), c->clone()}; Expression * delta0 = new Subtraction(new Power(b->clone(), new Rational(2), false), new Multiplication(mult5Operands, 3, false), false); Reduce(&delta0, *context); if (delta->isRationalZero()) { if (delta0->isRationalZero()) { // delta0 = 0 && delta = 0 --> x0 = -b/(3a) delete delta0; m_exactSolutions[0] = new Opposite(new Division(b, new Multiplication(new Rational(3), a, false), false), false); m_numberOfSolutions = 1; delete c; delete d; } else { // delta = 0 --> x0 = (9ad-bc)/(2delta0) // --> x1 = (4abc-9a^2d-b^3)/(a*delta0) Expression * mult6Operands[3] = {new Rational(9), a, d}; m_exactSolutions[0] = new Division(new Subtraction(new Multiplication(mult6Operands, 3, false), new Multiplication(b, c, false), false), new Multiplication(new Rational(2), delta0, false), false); Expression * mult7Operands[4] = {new Rational(4), a->clone(), b->clone(), c->clone()}; Expression * mult8Operands[3] = {new Rational(-9), new Power(a->clone(), new Rational(2), false), d->clone()}; Expression * add1Operands[3] = {new Multiplication(mult7Operands, 4, false), new Multiplication(mult8Operands,3, false), new Opposite(new Power(b->clone(), new Rational(3), false), false)}; m_exactSolutions[1] = new Division(new Addition(add1Operands, 3, false), new Multiplication(a->clone(), delta0, false), false); m_numberOfSolutions = 2; } } else { // delta1 = 2b^3-9abc+27a^2*d Expression * mult9Operands[4] = {new Rational(-9), a, b, c}; Expression * mult10Operands[3] = {new Rational(27), new Power(a->clone(), new Rational(2), false), d}; Expression * add2Operands[3] = {new Multiplication(new Rational(2), new Power(b->clone(), new Rational(3), false), false), new Multiplication(mult9Operands, 4, false), new Multiplication(mult10Operands, 3, false)}; Expression * delta1 = new Addition(add2Operands, 3, false); // C = Root((delta1+sqrt(-27a^2*delta))/2, 3) Expression * mult11Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), (*delta)->clone()}; Expression * c = new Power(new Division(new Addition(delta1, new SquareRoot(new Multiplication(mult11Operands, 3, false), false), false), new Rational(2), false), new Rational(1,3), false); Expression * unary3roots[2] = {new Addition(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false), new Subtraction(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false)}; // x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root for (int k = 0; k < 3; k++) { Expression * ccopy = c; Expression * delta0copy = delta0; if (k < 2) { ccopy = new Multiplication(c->clone(), unary3roots[k], false); delta0copy = delta0->clone(); } Expression * add3Operands[3] = {b->clone(), ccopy, new Division(delta0copy, ccopy->clone(), false)}; m_exactSolutions[k] = new Multiplication(new Division(new Rational(-1), new Multiplication(new Rational(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false); } m_numberOfSolutions = 3; } m_exactSolutions[m_numberOfSolutions] = delta; } #endif } void EquationStore::tidySolution() { for (int i = 0; i < k_maxNumberOfExactSolutions; i++) { if (m_exactSolutionExactLayouts[i]) { delete m_exactSolutionExactLayouts[i]; m_exactSolutionExactLayouts[i] = nullptr; } if (m_exactSolutionApproximateLayouts[i]) { delete m_exactSolutionApproximateLayouts[i]; m_exactSolutionApproximateLayouts[i] = nullptr; } } } }