1/3+3/4; 50! ifactor(50!); sqrt(2)^5; evalf(sqrt(2)); DIGITS:=22 evalf(sqrt(2)); evalf(exp(pi*sqrt(163))); (1+2*i)^2; f:=(2x+1)/(x^2+1); subst(f,x,2); g(x):=(2x+1)/(x^2+1); g(2); derive(f,x); derive(g(x),x); int(f,x); int(g(x),x); int(f,x,0,1); int(g(x),x,0,1); plotfunc(f); plotfunc(g(x)); equation(tangent(plotfunc(sin(x)),pi/2),[x,y]); plotfunc(x^2-y^2,[x,y]); solve(x^2-a*x+2,x); solve(x^2-a*x+2,a); solve(z^3=1,z); newton(x^5+2*x+1,x,1); newton(x^5+2*x+1,x,1+i); newton(x^5+2*x+1,x,-1+i); series(tan(x),x,0,11); series(tan(x),pi/4,3); abcuv(x^2+2*x+1,x^2-1,x+1); partfrac(4/(1-x^4)); desolve((x^2-1)*y'+2*y=0,y); desolve([(x^2-1)*diff(y)+2*y=0,y(0)=1],y); desolve([diff(diff(y))+y=x,y(0)=0,diff(y)(0)=2],y); laplace(exp(a*x),x,s); laplace(x,x,s); ilaplace(1/s^2+1/(s^2+1),s,x); A:=[[4,1,1],[1,4,1],[1,1,4]]; jordan(A); 1/A; [1,2,3]*[3,2,-1]; cross([1,2,3],[3,2,-1]); diff(2x^2*y-x*z^3,[x,y,z]); potential([4x*y-z^3,2x^2,-3x*z^2],[x,y,z]); divergence([3x*z^2,-y*z,x+2z],[x,y,z]); curl([3x*z^2,-y*z,x+2z],[x,y,z]); vpotential([y,6*x*z-1,0] ,[x,y,z]); limit(1/x,x,0); limit(1/x,x,0),1); limit(1/x,x,0,-1); polarplot(1/(1-2sin(t/2)),t,0,4*pi); polarplot(tan(t)+tan(t/2),t,0,2*pi); assume(n,integer); fourier_an(x^2,x,2,n,-1); fourier_an(x^2,x,2,0,-1); fourier_bn(x^2,x,2,n,-1); fourier_cn(x^2,x,2,n,-1); tlin(sin(x)^4+sin(x)^3); texpand(cos(5x));