\batchmode
\documentclass{article}
\RequirePackage{ifthen}


\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{stmaryrd}
\usepackage{makeidx}
\usepackage{times}
\usepackage{mathptmx}
\usepackage{ifpdf}
\ifpdf
 \usepackage[colorlinks,pdftex]{hyperref}
\else
\fi
\usepackage[francais]{babel}
\usepackage[T1]{fontenc}%
\providecommand{\R}{{\mathbb{R}}}%
\providecommand{\C}{{\mathbb{C}}}%
\providecommand{\Z}{{\mathbb{Z}}}%
\providecommand{\N}{{\mathbb{N}}}%
\providecommand{\faux}{$\square\;$}%
\providecommand{\vrai}{$\boxtimes\;$}%
\providecommand{\itemf}{\item$\square\;$}%
\providecommand{\itemv}{\item$\boxtimes\;$} 



\newtheorem{exo}{Exercice}[section] \makeindex


\usepackage[dvips]{color}


\pagecolor[gray]{.7}

\usepackage[latin1]{inputenc}



\makeatletter

\makeatletter
\count@=\the\catcode`\_ \catcode`\_=8 
\newenvironment{tex2html_wrap}{}{}%
\catcode`\<=12\catcode`\_=\count@
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
  \expandafter\renewcommand\csname #1\endcsname}%
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
\let\newedcommand\renewedcommand
\let\renewedenvironment\newedenvironment
\makeatother
\let\mathon=$
\let\mathoff=$
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
\newbox\sizebox
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
\setlength{\textwidth}{349pt}
\newwrite\lthtmlwrite
\makeatletter
\let\realnormalsize=\normalsize
\global\topskip=2sp
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
\def\@float{\let\@savefreelist\@freelist\real@float}
\def\liih@math{\ifmmode$\else\bad@math\fi}
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
\let\@largefloatcheck=\relax
\let\if@boxedmulticols=\iftrue
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
 \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
 \def\phantompar{\csname par\endcsname}\normalsize}%
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
 \let\ifinner=\iffalse \let\)\liih@math }%
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
 \expandafter\box\next\egroup}%
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
\newcommand\lthtmllogmath{\lthtmltypeout{l2hSize %
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
       \lthtmlmathtype{#1}\lthtmlvboxmathA}%
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
       \let\@savefreelist\@freelist \lthtmlhboxmathB}%
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
       \global\let\@freelist\@savefreelist}%
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
  \lthtmldisplayA{#1}\let\@eqnnum\relax}%
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
  \vrule height1.5ex width0pt }%
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
  \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
  \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
\newcommand\lthtmlindisplaymathZ{\egroup %
  \centerinlinemath\lthtmllogmath\lthtmlsetmath}
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
  \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
  \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
  \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
  \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
  \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
\def\centerinlinemath{%
  \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
  \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 
 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}

\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize 
  \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
  \else\expandafter\vss\fi}%
\providecommand{\selectlanguage}[1]{}%
\makeatletter \tracingstats = 1 
\providecommand{\Beta}{\textrm{B}}
\providecommand{\Mu}{\textrm{M}}
\providecommand{\Kappa}{\textrm{K}}
\providecommand{\Rho}{\textrm{R}}
\providecommand{\Epsilon}{\textrm{E}}
\providecommand{\Chi}{\textrm{X}}
\providecommand{\Iota}{\textrm{J}}
\providecommand{\omicron}{\textrm{o}}
\providecommand{\Zeta}{\textrm{Z}}
\providecommand{\Eta}{\textrm{H}}
\providecommand{\Nu}{\textrm{N}}
\providecommand{\Omicron}{\textrm{O}}
\providecommand{\Tau}{\textrm{T}}
\providecommand{\Alpha}{\textrm{A}}


\begin{document}
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
\makeatletter
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
\lthtmltypeout{}%
\makeatother
\setcounter{page}{1}
\onecolumn

% !!! IMAGES START HERE !!!

\stepcounter{section}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4316}%
$ \bullet$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay4355}%
$\displaystyle {\frac{{a\cdot b}}{{2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay4359}%
$\displaystyle {\frac{{a}}{{\displaystyle \frac{2}{b}}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay4363}%
$\displaystyle {\frac{{a}}{{2\cdot b}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{section}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4375}%
$ \sqrt{{-1}}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4377}%
$ \infty$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4383}%
$ \pi$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4384}%
$ \simeq$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4455}%
$ \sqrt{{2}}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4500}%
$ \leq$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4502}%
$ \geq$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4578}%
$ \mapsto$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4582}%
$ \mathbb {R}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{section}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{section}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4731}%
$ \mathbb {Z}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay4906}%
$\displaystyle \left\{\vphantom{ \begin{array}{llllllr}
 x &+& y &+& az&=&1\\ 
 x & +& a y&+& z&=&1 \\ 
 ax & +&y &+& z&=&-2 
\end{array}}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay4907}%
$\displaystyle \begin{array}{llllllr}
 x &+& y &+& az&=&1\\ 
 x & +& a y&+& z&=&1 \\ 
 ax & +&y &+& z&=&-2 
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline4909}%
$ \neq$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{section}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{section}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{subsection}
\stepcounter{section}
\stepcounter{subsection}
\stepcounter{subsubsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5181}%
$ \alpha$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5200}%
$\displaystyle {\frac{{x+1}}{{x-3}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5203}%
$\displaystyle {\frac{{x-7}}{{(x-3)^2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5255}%
$ \in$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5258}%
$ \cup$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsubsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5293}%
$\displaystyle {\frac{{\exp(x)^2-\exp(x)+1}}{{\exp(x)^3+\exp(x)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5302}%
$\displaystyle \int_{0}^{x}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5304}%
$\displaystyle \lim_{{x->+\infty}}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5330}%
$\displaystyle {\frac{{1}}{{2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5348}%
$\displaystyle \int_{1}^{2}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5349}%
$\displaystyle {\frac{{1}}{{x^3+1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5353}%
$\displaystyle {\frac{{t^2}}{{1-t^4}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5355}%
$\displaystyle \int$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5359}%
$\displaystyle {\frac{{\sin(x)^2}}{{\cos(2x)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5367}%
$\displaystyle {\frac{{1}}{{t^2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5370}%
$\displaystyle {\frac{{1}}{{t(t^2+1)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5373}%
$\displaystyle {\frac{{t^2-t+1}}{{t^4+t^2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5379}%
$\displaystyle {\frac{{\ln(\cos(x))}}{{\exp(x+x^2)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5381}%
$ \_size$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5385}%
$\scriptstyle \alpha$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{subsection}
\stepcounter{subsection}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5393}%
$ \left[\vphantom{ 
\begin{array}{ccc}
2a-1 & a & 2a-1\\ 
a^2+a-2 & a^2-1 & a-1\\ 
a^2+a-1 & a^2+a-1 & a
\end{array}
}\right.$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5394}%
$ \begin{array}{ccc}
2a-1 & a & 2a-1\\ 
a^2+a-2 & a^2-1 & a-1\\ 
a^2+a-1 & a^2+a-1 & a
\end{array}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5395}%
$ \left.\vphantom{ 
\begin{array}{ccc}
2a-1 & a & 2a-1\\ 
a^2+a-2 & a^2-1 & a-1\\ 
a^2+a-1 & a^2+a-1 & a
\end{array}
}\right]$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5402}%
$\displaystyle {\frac{{1}}{{2a^4-2a^3-2a^2+2a}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5403}%
$\displaystyle \left[\vphantom{
\begin{array}{ccc}
a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ 
-a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ 
a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5404}%
$\displaystyle \begin{array}{ccc}
a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ 
-a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ 
a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5405}%
$\displaystyle \left.\vphantom{
\begin{array}{ccc}
a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ 
-a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ 
a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1
\end{array}
}\right]$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5407}%
$ \not\in$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5409}%
$ {\frac{{1}}{{12}}}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5410}%
$ \left[\vphantom{ 
\begin{array}{ccc}
1 & 11 & -7\\ 
-3 & -9 & 9\\ 
5 & -5 & 1
\end{array}
}\right.$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5411}%
$ \begin{array}{ccc}
1 & 11 & -7\\ 
-3 & -9 & 9\\ 
5 & -5 & 1
\end{array}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5412}%
$ \left.\vphantom{ 
\begin{array}{ccc}
1 & 11 & -7\\ 
-3 & -9 & 9\\ 
5 & -5 & 1
\end{array}
}\right]$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5416}%
$ \left[\vphantom{ 
\begin{array}{ccc}
1 & 1 & a\\ 
1 & a & 1\\ 
a & 1 & 1
\end{array}
}\right.$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5417}%
$ \begin{array}{ccc}
1 & 1 & a\\ 
1 & a & 1\\ 
a & 1 & 1
\end{array}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5418}%
$ \left.\vphantom{ 
\begin{array}{ccc}
1 & 1 & a\\ 
1 & a & 1\\ 
a & 1 & 1
\end{array}
}\right]$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5423}%
$\displaystyle \tt\left[ 
\begin{array}{ccc}
-a+1 & 0 & 0\\ 
0 & a+2 & 0\\ 
0 & 0 & a-1
\end{array}
\right]$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5429}%
$ \lambda$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5433}%
$\displaystyle \tt\left[ 
\begin{array}{rrr}
-1 & 1 & 1\\ 
0 & 1 & -2\\ 
-1 & 1 & 1
\end{array}
\right]$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5438}%
$\displaystyle \tt\left[ \left[ 
\begin{array}{rrr}
-1 & 1 & 1\\ 
0 & 1 & -2\\ 
-1 & 1 & 1
\end{array}
\right] 
\left[\begin{array}{ccc}
-a+1 & 0 & 0\\ 
0 & a+2 & 0\\ 
0 & 0 & a-1
\end{array}
\right] 
\right]$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5440}%
$\displaystyle \tt\left[ \left[ 
\begin{array}{rrr}
1 & -3 & 0\\ 
1 & 0 & -3\\ 
1 & 3 & 3
\end{array}
\right] 
\left[\begin{array}{ccc}
3 & 0 & 0\\ 
0 & 0 & 0\\ 
0 & 0 & 0
\end{array}
\right] 
\right]$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{section}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5451}%
$ \square$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5453}%
$ \boxtimes$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

\stepcounter{section}
{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5926}%
$\displaystyle {\frac{{x^4+x^3-4x^2-4x}}{{x^4+x^3-x^2-x}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5928}%
$\displaystyle {\frac{{(x+2)(x+1)(x-2)}}{{x^3+x^2-x-1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5929}%
$\displaystyle {\frac{{x^4+x^3-4x^2-4x}}{{x(x-1)(x+1)^2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5930}%
$\displaystyle {\frac{{(x+2)(x-2)}}{{(x-1)(x+1)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5932}%
$\displaystyle {\frac{{x^2}}{{(x-1)(x+1)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5933}%
$\displaystyle {\frac{{1}}{{(x-1)(x+1)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5940}%
$\displaystyle {\frac{{x^3-yx^2-yx+y^2}}{{x^3-yx^2-x+y}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5942}%
$\displaystyle {\frac{{x^2-y}}{{x^2-1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5943}%
$\displaystyle {\frac{{x^2-y}}{{(x-1)(x+1)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5945}%
$\displaystyle {\frac{{y-1}}{{x-1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5946}%
$\displaystyle {\frac{{y-1}}{{x+1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5947}%
$\displaystyle {\frac{{y-1}}{{x^2-1}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5955}%
$\displaystyle \sqrt{{e^x-1}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5956}%
$\displaystyle {\frac{{1}}{{x\sqrt{1+x^2}}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5958}%
$\displaystyle {\frac{{1}}{{1+\sin(x)+\cos(x)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5959}%
$\displaystyle {\frac{{\ln(x)}}{{x(x^2+1)^2}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline5969}%
$ \int_{a}^{b}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5971}%
$\displaystyle \int_{{-2}}^{{-1}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5972}%
$\displaystyle {\frac{{1}}{{x}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5973}%
$\displaystyle \int_{0}^{1}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5975}%
$\displaystyle \int_{0}^{{\pi/2}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5976}%
$\displaystyle \sqrt{{\cos(x)}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay5986}%
$\displaystyle \sum_{{j=0}}^{{n-1}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6028}%
$\displaystyle \lim_{{x\rightarrow 0}}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6029}%
$\displaystyle {\frac{{\sin(x)}}{{x}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6030}%
$\displaystyle \lim_{{x\rightarrow 0^+}}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6031}%
$\displaystyle \lim_{{x\rightarrow +\infty}}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6053}%
$ {\frac{{1}}{{\pi^4}}}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6059}%
$ \epsilon$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6121}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(t)&=& \sin(t)\\ 
y(t)&=& \cos^3(t)
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6122}%
$\displaystyle \begin{array}{lcl}
x(t)&=& \sin(t)\\ 
y(t)&=& \cos^3(t)
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6124}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(t)&=& \sin(4\,t)\\ 
y(t)&=& \cos^3(6\,t)
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6125}%
$\displaystyle \begin{array}{lcl}
x(t)&=& \sin(4\,t)\\ 
y(t)&=& \cos^3(6\,t)
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6127}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(t)&=& \sin(132\,t)\\ 
y(t)&=& \cos^3(126\,t)
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6128}%
$\displaystyle \begin{array}{lcl}
x(t)&=& \sin(132\,t)\\ 
y(t)&=& \cos^3(126\,t)
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6145}%
$ \sqrt{{x^2+y^2}}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6147}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(u,v)&=& u\,\cos(v)\\ 
y(u,v)&=& u\,\sin(v)\\ 
z(u,v)&=& 1-u\;.
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6148}%
$\displaystyle \begin{array}{lcl}
x(u,v)&=& u\,\cos(v)\\ 
y(u,v)&=& u\,\sin(v)\\ 
z(u,v)&=& 1-u\;.
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6151}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(t)&=& t\,\cos(a t)\\ 
y(t)&=& t\,\sin(a t)\\ 
z(t)&=& 1-t\;.
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6152}%
$\displaystyle \begin{array}{lcl}
x(t)&=& t\,\cos(a t)\\ 
y(t)&=& t\,\sin(a t)\\ 
z(t)&=& 1-t\;.
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6154}%
$\displaystyle \left\{\vphantom{
\begin{array}{lcl}
x(t)&=& a\,\cos(t)\\ 
y(t)&=& a\,\sin(t)\\ 
z(t)&=& 1-a\;.
\end{array}
}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6155}%
$\displaystyle \begin{array}{lcl}
x(t)&=& a\,\cos(t)\\ 
y(t)&=& a\,\sin(t)\\ 
z(t)&=& 1-a\;.
\end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6190}%
$\displaystyle {\frac{{1}}{{\displaystyle{a_1+
\frac{1}{\displaystyle{a_2+\frac{1}{\ddots+\displaystyle{\frac{1}{a_n}}}}}}}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6237}%
$\displaystyle \left(\vphantom{ \begin{array}{cccccc} 0&1&0&\ldots&&0\\  \vdots&\ddots&\ddots&\ddots&&\vdots\\  &&&&&\\  \vdots&&&\ddots&\ddots&0\\  0&\ldots&&\ldots&0&1\\  -a_0&-a_1&&\ldots&&-a_{d-1} \end{array} }\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6238}%
$\displaystyle \begin{array}{cccccc} 0&1&0&\ldots&&0\\  \vdots&\ddots&\ddots&\ddots&&\vdots\\  &&&&&\\  \vdots&&&\ddots&\ddots&0\\  0&\ldots&&\ldots&0&1\\  -a_0&-a_1&&\ldots&&-a_{d-1} \end{array}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6239}%
$\displaystyle \left.\vphantom{ \begin{array}{cccccc} 0&1&0&\ldots&&0\\  \vdots&\ddots&\ddots&\ddots&&\vdots\\  &&&&&\\  \vdots&&&\ddots&\ddots&0\\  0&\ldots&&\ldots&0&1\\  -a_0&-a_1&&\ldots&&-a_{d-1} \end{array} }\right)$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6285}%
$\displaystyle \sum_{{p=1}}^{\infty}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6286}%
$\displaystyle {\frac{{t^p}}{{p!}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6374}%
$ \Phi$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6377}%
$\displaystyle \Phi$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6378}%
$\displaystyle \left(\vphantom{\frac{x}{1+y}\,,\,\frac{y}{1+x}}\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6379}%
$\displaystyle {\frac{{x}}{{1+y}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6380}%
$\displaystyle {\frac{{y}}{{1+x}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6381}%
$\displaystyle \left.\vphantom{\frac{x}{1+y}\,,\,\frac{y}{1+x}}\right)$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6388}%
$ \Delta$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_inline6397}%
$ \Phi^{{-1}}_{}$%
\lthtmlinlinemathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6408}%
$\displaystyle \iint_{D}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6409}%
$\displaystyle \left(\vphantom{ \frac{1+x+y}{(1+x)(1+y)} }\right.$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6410}%
$\displaystyle {\frac{{1+x+y}}{{(1+x)(1+y)}}}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6411}%
$\displaystyle \left.\vphantom{ \frac{1+x+y}{(1+x)(1+y)} }\right)^{3}_{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

{\newpage\clearpage
\lthtmlinlinemathA{tex2html_wrap_indisplay6413}%
$\displaystyle \iint_{\Delta}^{}$%
\lthtmlindisplaymathZ
\lthtmlcheckvsize\clearpage}

\appendix
\stepcounter{section}

\end{document}