\batchmode \documentclass{article} \RequirePackage{ifthen} \usepackage{graphicx} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{stmaryrd} \usepackage{makeidx} \usepackage{times} \usepackage{mathptmx} \usepackage{ifpdf} \ifpdf \usepackage[colorlinks,pdftex]{hyperref} \else \fi \usepackage[francais]{babel} \usepackage[T1]{fontenc}% \providecommand{\R}{{\mathbb{R}}}% \providecommand{\C}{{\mathbb{C}}}% \providecommand{\Z}{{\mathbb{Z}}}% \providecommand{\N}{{\mathbb{N}}}% \providecommand{\faux}{$\square\;$}% \providecommand{\vrai}{$\boxtimes\;$}% \providecommand{\itemf}{\item$\square\;$}% \providecommand{\itemv}{\item$\boxtimes\;$} \newtheorem{exo}{Exercice}[section] \makeindex \usepackage[dvips]{color} \pagecolor[gray]{.7} \usepackage[latin1]{inputenc} \makeatletter \makeatletter \count@=\the\catcode`\_ \catcode`\_=8 \newenvironment{tex2html_wrap}{}{}% \catcode`\<=12\catcode`\_=\count@ \newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}% \newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}% \expandafter\renewcommand\csname #1\endcsname}% \newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}% \let\newedcommand\renewedcommand \let\renewedenvironment\newedenvironment \makeatother \let\mathon=$ \let\mathoff=$ \ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi \newbox\sizebox \setlength{\hoffset}{0pt}\setlength{\voffset}{0pt} \addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt} \addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt} \addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt} \addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt} \setlength{\textwidth}{349pt} \newwrite\lthtmlwrite \makeatletter \let\realnormalsize=\normalsize \global\topskip=2sp \def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float \def\@float{\let\@savefreelist\@freelist\real@float} \def\liih@math{\ifmmode$\else\bad@math\fi} \def\end@float{\realend@float\global\let\@freelist\@savefreelist} \let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float \let\@largefloatcheck=\relax \let\if@boxedmulticols=\iftrue \def\@dbflt{\let\@savefreelist\@freelist\real@dbflt} \def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize \parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}% \def\phantompar{\csname par\endcsname}\normalsize}% \def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}% \newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }% \newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }% \newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup % \let\ifinner=\iffalse \let\)\liih@math }% \newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}% \expandafter\box\next\egroup}% \newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}% \newcommand\lthtmllogmath{\lthtmltypeout{l2hSize % :\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}% \newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist \lthtmlmathtype{#1}\lthtmlvboxmathA}% \newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}% \newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup \let\@savefreelist\@freelist \lthtmlhboxmathB}% \newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}% \newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox \global\let\@freelist\@savefreelist}% \newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}% \newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}% \newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}% \lthtmldisplayA{#1}\let\@eqnnum\relax}% \newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}% \newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB} \newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA \vrule height1.5ex width0pt }% \newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}% \newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}% \newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline} \newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt % \expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath} \newcommand\lthtmlindisplaymathZ{\egroup % \centerinlinemath\lthtmllogmath\lthtmlsetmath} \def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{% \kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{% \kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt% \ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt% \ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}} \def\centerinlinemath{% \dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi \advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1 \dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax} \def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize \ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill \else\expandafter\vss\fi}% \providecommand{\selectlanguage}[1]{}% \makeatletter \tracingstats = 1 \providecommand{\Beta}{\textrm{B}} \providecommand{\Mu}{\textrm{M}} \providecommand{\Kappa}{\textrm{K}} \providecommand{\Rho}{\textrm{R}} \providecommand{\Epsilon}{\textrm{E}} \providecommand{\Chi}{\textrm{X}} \providecommand{\Iota}{\textrm{J}} \providecommand{\omicron}{\textrm{o}} \providecommand{\Zeta}{\textrm{Z}} \providecommand{\Eta}{\textrm{H}} \providecommand{\Nu}{\textrm{N}} \providecommand{\Omicron}{\textrm{O}} \providecommand{\Tau}{\textrm{T}} \providecommand{\Alpha}{\textrm{A}} \begin{document} \pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}% \lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}% \makeatletter \if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}% \else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi% \lthtmltypeout{}% \makeatother \setcounter{page}{1} \onecolumn % !!! IMAGES START HERE !!! \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4316}% $ \bullet$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay4355}% $\displaystyle {\frac{{a\cdot b}}{{2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay4359}% $\displaystyle {\frac{{a}}{{\displaystyle \frac{2}{b}}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay4363}% $\displaystyle {\frac{{a}}{{2\cdot b}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4375}% $ \sqrt{{-1}}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4377}% $ \infty$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4383}% $ \pi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4384}% $ \simeq$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4455}% $ \sqrt{{2}}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4500}% $ \leq$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4502}% $ \geq$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4578}% $ \mapsto$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4582}% $ \mathbb {R}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4731}% $ \mathbb {Z}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay4906}% $\displaystyle \left\{\vphantom{ \begin{array}{llllllr} x &+& y &+& az&=&1\\ x & +& a y&+& z&=&1 \\ ax & +&y &+& z&=&-2 \end{array}}\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay4907}% $\displaystyle \begin{array}{llllllr} x &+& y &+& az&=&1\\ x & +& a y&+& z&=&1 \\ ax & +&y &+& z&=&-2 \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline4909}% $ \neq$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{subsection} \stepcounter{section} \stepcounter{subsection} \stepcounter{subsubsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5181}% $ \alpha$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5200}% $\displaystyle {\frac{{x+1}}{{x-3}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5203}% $\displaystyle {\frac{{x-7}}{{(x-3)^2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5255}% $ \in$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5258}% $ \cup$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsubsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5293}% $\displaystyle {\frac{{\exp(x)^2-\exp(x)+1}}{{\exp(x)^3+\exp(x)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5302}% $\displaystyle \int_{0}^{x}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5304}% $\displaystyle \lim_{{x->+\infty}}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5330}% $\displaystyle {\frac{{1}}{{2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5348}% $\displaystyle \int_{1}^{2}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5349}% $\displaystyle {\frac{{1}}{{x^3+1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5353}% $\displaystyle {\frac{{t^2}}{{1-t^4}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5355}% $\displaystyle \int$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5359}% $\displaystyle {\frac{{\sin(x)^2}}{{\cos(2x)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5367}% $\displaystyle {\frac{{1}}{{t^2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5370}% $\displaystyle {\frac{{1}}{{t(t^2+1)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5373}% $\displaystyle {\frac{{t^2-t+1}}{{t^4+t^2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5379}% $\displaystyle {\frac{{\ln(\cos(x))}}{{\exp(x+x^2)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5381}% $ \_size$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5385}% $\scriptstyle \alpha$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{subsection} \stepcounter{subsection} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5393}% $ \left[\vphantom{ \begin{array}{ccc} 2a-1 & a & 2a-1\\ a^2+a-2 & a^2-1 & a-1\\ a^2+a-1 & a^2+a-1 & a \end{array} }\right.$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5394}% $ \begin{array}{ccc} 2a-1 & a & 2a-1\\ a^2+a-2 & a^2-1 & a-1\\ a^2+a-1 & a^2+a-1 & a \end{array}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5395}% $ \left.\vphantom{ \begin{array}{ccc} 2a-1 & a & 2a-1\\ a^2+a-2 & a^2-1 & a-1\\ a^2+a-1 & a^2+a-1 & a \end{array} }\right]$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5402}% $\displaystyle {\frac{{1}}{{2a^4-2a^3-2a^2+2a}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5403}% $\displaystyle \left[\vphantom{ \begin{array}{ccc} a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ -a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1 \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5404}% $\displaystyle \begin{array}{ccc} a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ -a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1 \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5405}% $\displaystyle \left.\vphantom{ \begin{array}{ccc} a-1 & 2a^3+3a+1 & -2a^3+a^2+a-1\\ -a^2+1 & -2a^3+a^2+2a-1 & 2a^3-a^2-2a+1\\ a^3-2a+1 & -a^3+2a-1 & a^3-2a^2+1 \end{array} }\right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5407}% $ \not\in$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5409}% $ {\frac{{1}}{{12}}}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5410}% $ \left[\vphantom{ \begin{array}{ccc} 1 & 11 & -7\\ -3 & -9 & 9\\ 5 & -5 & 1 \end{array} }\right.$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5411}% $ \begin{array}{ccc} 1 & 11 & -7\\ -3 & -9 & 9\\ 5 & -5 & 1 \end{array}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5412}% $ \left.\vphantom{ \begin{array}{ccc} 1 & 11 & -7\\ -3 & -9 & 9\\ 5 & -5 & 1 \end{array} }\right]$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5416}% $ \left[\vphantom{ \begin{array}{ccc} 1 & 1 & a\\ 1 & a & 1\\ a & 1 & 1 \end{array} }\right.$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5417}% $ \begin{array}{ccc} 1 & 1 & a\\ 1 & a & 1\\ a & 1 & 1 \end{array}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5418}% $ \left.\vphantom{ \begin{array}{ccc} 1 & 1 & a\\ 1 & a & 1\\ a & 1 & 1 \end{array} }\right]$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5423}% $\displaystyle \tt\left[ \begin{array}{ccc} -a+1 & 0 & 0\\ 0 & a+2 & 0\\ 0 & 0 & a-1 \end{array} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5429}% $ \lambda$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5433}% $\displaystyle \tt\left[ \begin{array}{rrr} -1 & 1 & 1\\ 0 & 1 & -2\\ -1 & 1 & 1 \end{array} \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5438}% $\displaystyle \tt\left[ \left[ \begin{array}{rrr} -1 & 1 & 1\\ 0 & 1 & -2\\ -1 & 1 & 1 \end{array} \right] \left[\begin{array}{ccc} -a+1 & 0 & 0\\ 0 & a+2 & 0\\ 0 & 0 & a-1 \end{array} \right] \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5440}% $\displaystyle \tt\left[ \left[ \begin{array}{rrr} 1 & -3 & 0\\ 1 & 0 & -3\\ 1 & 3 & 3 \end{array} \right] \left[\begin{array}{ccc} 3 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right] \right]$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5451}% $ \square$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5453}% $ \boxtimes$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} \stepcounter{section} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5926}% $\displaystyle {\frac{{x^4+x^3-4x^2-4x}}{{x^4+x^3-x^2-x}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5928}% $\displaystyle {\frac{{(x+2)(x+1)(x-2)}}{{x^3+x^2-x-1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5929}% $\displaystyle {\frac{{x^4+x^3-4x^2-4x}}{{x(x-1)(x+1)^2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5930}% $\displaystyle {\frac{{(x+2)(x-2)}}{{(x-1)(x+1)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5932}% $\displaystyle {\frac{{x^2}}{{(x-1)(x+1)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5933}% $\displaystyle {\frac{{1}}{{(x-1)(x+1)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5940}% $\displaystyle {\frac{{x^3-yx^2-yx+y^2}}{{x^3-yx^2-x+y}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5942}% $\displaystyle {\frac{{x^2-y}}{{x^2-1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5943}% $\displaystyle {\frac{{x^2-y}}{{(x-1)(x+1)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5945}% $\displaystyle {\frac{{y-1}}{{x-1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5946}% $\displaystyle {\frac{{y-1}}{{x+1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5947}% $\displaystyle {\frac{{y-1}}{{x^2-1}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5955}% $\displaystyle \sqrt{{e^x-1}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5956}% $\displaystyle {\frac{{1}}{{x\sqrt{1+x^2}}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5958}% $\displaystyle {\frac{{1}}{{1+\sin(x)+\cos(x)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5959}% $\displaystyle {\frac{{\ln(x)}}{{x(x^2+1)^2}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline5969}% $ \int_{a}^{b}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5971}% $\displaystyle \int_{{-2}}^{{-1}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5972}% $\displaystyle {\frac{{1}}{{x}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5973}% $\displaystyle \int_{0}^{1}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5975}% $\displaystyle \int_{0}^{{\pi/2}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5976}% $\displaystyle \sqrt{{\cos(x)}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay5986}% $\displaystyle \sum_{{j=0}}^{{n-1}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6028}% $\displaystyle \lim_{{x\rightarrow 0}}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6029}% $\displaystyle {\frac{{\sin(x)}}{{x}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6030}% $\displaystyle \lim_{{x\rightarrow 0^+}}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6031}% $\displaystyle \lim_{{x\rightarrow +\infty}}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6053}% $ {\frac{{1}}{{\pi^4}}}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6059}% $ \epsilon$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6121}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(t)&=& \sin(t)\\ y(t)&=& \cos^3(t) \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6122}% $\displaystyle \begin{array}{lcl} x(t)&=& \sin(t)\\ y(t)&=& \cos^3(t) \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6124}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(t)&=& \sin(4\,t)\\ y(t)&=& \cos^3(6\,t) \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6125}% $\displaystyle \begin{array}{lcl} x(t)&=& \sin(4\,t)\\ y(t)&=& \cos^3(6\,t) \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6127}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(t)&=& \sin(132\,t)\\ y(t)&=& \cos^3(126\,t) \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6128}% $\displaystyle \begin{array}{lcl} x(t)&=& \sin(132\,t)\\ y(t)&=& \cos^3(126\,t) \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6145}% $ \sqrt{{x^2+y^2}}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6147}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(u,v)&=& u\,\cos(v)\\ y(u,v)&=& u\,\sin(v)\\ z(u,v)&=& 1-u\;. \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6148}% $\displaystyle \begin{array}{lcl} x(u,v)&=& u\,\cos(v)\\ y(u,v)&=& u\,\sin(v)\\ z(u,v)&=& 1-u\;. \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6151}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(t)&=& t\,\cos(a t)\\ y(t)&=& t\,\sin(a t)\\ z(t)&=& 1-t\;. \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6152}% $\displaystyle \begin{array}{lcl} x(t)&=& t\,\cos(a t)\\ y(t)&=& t\,\sin(a t)\\ z(t)&=& 1-t\;. \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6154}% $\displaystyle \left\{\vphantom{ \begin{array}{lcl} x(t)&=& a\,\cos(t)\\ y(t)&=& a\,\sin(t)\\ z(t)&=& 1-a\;. \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6155}% $\displaystyle \begin{array}{lcl} x(t)&=& a\,\cos(t)\\ y(t)&=& a\,\sin(t)\\ z(t)&=& 1-a\;. \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6190}% $\displaystyle {\frac{{1}}{{\displaystyle{a_1+ \frac{1}{\displaystyle{a_2+\frac{1}{\ddots+\displaystyle{\frac{1}{a_n}}}}}}}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6237}% $\displaystyle \left(\vphantom{ \begin{array}{cccccc} 0&1&0&\ldots&&0\\ \vdots&\ddots&\ddots&\ddots&&\vdots\\ &&&&&\\ \vdots&&&\ddots&\ddots&0\\ 0&\ldots&&\ldots&0&1\\ -a_0&-a_1&&\ldots&&-a_{d-1} \end{array} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6238}% $\displaystyle \begin{array}{cccccc} 0&1&0&\ldots&&0\\ \vdots&\ddots&\ddots&\ddots&&\vdots\\ &&&&&\\ \vdots&&&\ddots&\ddots&0\\ 0&\ldots&&\ldots&0&1\\ -a_0&-a_1&&\ldots&&-a_{d-1} \end{array}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6239}% $\displaystyle \left.\vphantom{ \begin{array}{cccccc} 0&1&0&\ldots&&0\\ \vdots&\ddots&\ddots&\ddots&&\vdots\\ &&&&&\\ \vdots&&&\ddots&\ddots&0\\ 0&\ldots&&\ldots&0&1\\ -a_0&-a_1&&\ldots&&-a_{d-1} \end{array} }\right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6285}% $\displaystyle \sum_{{p=1}}^{\infty}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6286}% $\displaystyle {\frac{{t^p}}{{p!}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6374}% $ \Phi$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6377}% $\displaystyle \Phi$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6378}% $\displaystyle \left(\vphantom{\frac{x}{1+y}\,,\,\frac{y}{1+x}}\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6379}% $\displaystyle {\frac{{x}}{{1+y}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6380}% $\displaystyle {\frac{{y}}{{1+x}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6381}% $\displaystyle \left.\vphantom{\frac{x}{1+y}\,,\,\frac{y}{1+x}}\right)$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6388}% $ \Delta$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_inline6397}% $ \Phi^{{-1}}_{}$% \lthtmlinlinemathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6408}% $\displaystyle \iint_{D}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6409}% $\displaystyle \left(\vphantom{ \frac{1+x+y}{(1+x)(1+y)} }\right.$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6410}% $\displaystyle {\frac{{1+x+y}}{{(1+x)(1+y)}}}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6411}% $\displaystyle \left.\vphantom{ \frac{1+x+y}{(1+x)(1+y)} }\right)^{3}_{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} {\newpage\clearpage \lthtmlinlinemathA{tex2html_wrap_indisplay6413}% $\displaystyle \iint_{\Delta}^{}$% \lthtmlindisplaymathZ \lthtmlcheckvsize\clearpage} \appendix \stepcounter{section} \end{document}