Blame view

epsilon-master/liba/src/external/sqlite/mem5.c 16.8 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
  /*
  ** 2007 October 14
  **
  ** The author disclaims copyright to this source code.  In place of
  ** a legal notice, here is a blessing:
  **
  **    May you do good and not evil.
  **    May you find forgiveness for yourself and forgive others.
  **    May you share freely, never taking more than you give.
  **
  *************************************************************************
  ** This file contains the C functions that implement a memory
  ** allocation subsystem for use by SQLite. 
  **
  ** This version of the memory allocation subsystem omits all
  ** use of malloc(). The application gives SQLite a block of memory
  ** before calling sqlite3_initialize() from which allocations
  ** are made and returned by the xMalloc() and xRealloc() 
  ** implementations. Once sqlite3_initialize() has been called,
  ** the amount of memory available to SQLite is fixed and cannot
  ** be changed.
  **
  ** This version of the memory allocation subsystem is included
  ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
  **
  ** This memory allocator uses the following algorithm:
  **
  **   1.  All memory allocations sizes are rounded up to a power of 2.
  **
  **   2.  If two adjacent free blocks are the halves of a larger block,
  **       then the two blocks are coalesced into the single larger block.
  **
  **   3.  New memory is allocated from the first available free block.
  **
  ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
  ** Concerning Dynamic Storage Allocation". Journal of the Association for
  ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
  ** 
  ** Let n be the size of the largest allocation divided by the minimum
  ** allocation size (after rounding all sizes up to a power of 2.)  Let M
  ** be the maximum amount of memory ever outstanding at one time.  Let
  ** N be the total amount of memory available for allocation.  Robson
  ** proved that this memory allocator will never breakdown due to 
  ** fragmentation as long as the following constraint holds:
  **
  **      N >=  M*(1 + log2(n)/2) - n + 1
  **
  ** The sqlite3_status() logic tracks the maximum values of n and M so
  ** that an application can, at any time, verify this constraint.
  */
  #include "sqliteInt.h"
  
  /*
  ** This version of the memory allocator is used only when 
  ** SQLITE_ENABLE_MEMSYS5 is defined.
  */
  #ifdef SQLITE_ENABLE_MEMSYS5
  
  /*
  ** A minimum allocation is an instance of the following structure.
  ** Larger allocations are an array of these structures where the
  ** size of the array is a power of 2.
  **
  ** The size of this object must be a power of two.  That fact is
  ** verified in memsys5Init().
  */
  typedef struct Mem5Link Mem5Link;
  struct Mem5Link {
    int next;       /* Index of next free chunk */
    int prev;       /* Index of previous free chunk */
  };
  
  /*
  ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
  ** mem5.szAtom is always at least 8 and 32-bit integers are used,
  ** it is not actually possible to reach this limit.
  */
  #define LOGMAX 30
  
  /*
  ** Masks used for mem5.aCtrl[] elements.
  */
  #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
  #define CTRL_FREE     0x20    /* True if not checked out */
  
  /*
  ** All of the static variables used by this module are collected
  ** into a single structure named "mem5".  This is to keep the
  ** static variables organized and to reduce namespace pollution
  ** when this module is combined with other in the amalgamation.
  */
  static SQLITE_WSD struct Mem5Global {
    /*
    ** Memory available for allocation
    */
    int szAtom;      /* Smallest possible allocation in bytes */
    int nBlock;      /* Number of szAtom sized blocks in zPool */
    u8 *zPool;       /* Memory available to be allocated */
    
    /*
    ** Mutex to control access to the memory allocation subsystem.
    */
    sqlite3_mutex *mutex;
  
    /*
    ** Performance statistics
    */
    u64 nAlloc;         /* Total number of calls to malloc */
    u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
    u64 totalExcess;    /* Total internal fragmentation */
    u32 currentOut;     /* Current checkout, including internal fragmentation */
    u32 currentCount;   /* Current number of distinct checkouts */
    u32 maxOut;         /* Maximum instantaneous currentOut */
    u32 maxCount;       /* Maximum instantaneous currentCount */
    u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
    
    /*
    ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
    ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
    ** and so forth.
    */
    int aiFreelist[LOGMAX+1];
  
    /*
    ** Space for tracking which blocks are checked out and the size
    ** of each block.  One byte per block.
    */
    u8 *aCtrl;
  
  } mem5;
  
  /*
  ** Access the static variable through a macro for SQLITE_OMIT_WSD.
  */
  #define mem5 GLOBAL(struct Mem5Global, mem5)
  
  /*
  ** Assuming mem5.zPool is divided up into an array of Mem5Link
  ** structures, return a pointer to the idx-th such link.
  */
  #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
  
  /*
  ** Unlink the chunk at mem5.aPool[i] from list it is currently
  ** on.  It should be found on mem5.aiFreelist[iLogsize].
  */
  static void memsys5Unlink(int i, int iLogsize){
    int next, prev;
    assert( i>=0 && i<mem5.nBlock );
    assert( iLogsize>=0 && iLogsize<=LOGMAX );
    assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
  
    next = MEM5LINK(i)->next;
    prev = MEM5LINK(i)->prev;
    if( prev<0 ){
      mem5.aiFreelist[iLogsize] = next;
    }else{
      MEM5LINK(prev)->next = next;
    }
    if( next>=0 ){
      MEM5LINK(next)->prev = prev;
    }
  }
  
  /*
  ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
  ** free list.
  */
  static void memsys5Link(int i, int iLogsize){
    int x;
    assert( sqlite3_mutex_held(mem5.mutex) );
    assert( i>=0 && i<mem5.nBlock );
    assert( iLogsize>=0 && iLogsize<=LOGMAX );
    assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
  
    x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
    MEM5LINK(i)->prev = -1;
    if( x>=0 ){
      assert( x<mem5.nBlock );
      MEM5LINK(x)->prev = i;
    }
    mem5.aiFreelist[iLogsize] = i;
  }
  
  /*
  ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
  ** will already be held (obtained by code in malloc.c) if
  ** sqlite3GlobalConfig.bMemStat is true.
  */
  static void memsys5Enter(void){
    sqlite3_mutex_enter(mem5.mutex);
  }
  static void memsys5Leave(void){
    sqlite3_mutex_leave(mem5.mutex);
  }
  
  /*
  ** Return the size of an outstanding allocation, in bytes.  The
  ** size returned omits the 8-byte header overhead.  This only
  ** works for chunks that are currently checked out.
  */
  static int memsys5Size(void *p){
    int iSize = 0;
    if( p ){
      int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
      assert( i>=0 && i<mem5.nBlock );
      iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
    }
    return iSize;
  }
  
  /*
  ** Return a block of memory of at least nBytes in size.
  ** Return NULL if unable.  Return NULL if nBytes==0.
  **
  ** The caller guarantees that nByte is positive.
  **
  ** The caller has obtained a mutex prior to invoking this
  ** routine so there is never any chance that two or more
  ** threads can be in this routine at the same time.
  */
  static void *memsys5MallocUnsafe(int nByte){
    int i;           /* Index of a mem5.aPool[] slot */
    int iBin;        /* Index into mem5.aiFreelist[] */
    int iFullSz;     /* Size of allocation rounded up to power of 2 */
    int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
  
    /* nByte must be a positive */
    assert( nByte>0 );
  
    /* Keep track of the maximum allocation request.  Even unfulfilled
    ** requests are counted */
    if( (u32)nByte>mem5.maxRequest ){
      mem5.maxRequest = nByte;
    }
  
    /* Abort if the requested allocation size is larger than the largest
    ** power of two that we can represent using 32-bit signed integers.
    */
    if( nByte > 0x40000000 ){
      return 0;
    }
  
    /* Round nByte up to the next valid power of two */
    for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
  
    /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
    ** block.  If not, then split a block of the next larger power of
    ** two in order to create a new free block of size iLogsize.
    */
    for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
    if( iBin>LOGMAX ){
      testcase( sqlite3GlobalConfig.xLog!=0 );
      sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
      return 0;
    }
    i = mem5.aiFreelist[iBin];
    memsys5Unlink(i, iBin);
    while( iBin>iLogsize ){
      int newSize;
  
      iBin--;
      newSize = 1 << iBin;
      mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
      memsys5Link(i+newSize, iBin);
    }
    mem5.aCtrl[i] = iLogsize;
  
    /* Update allocator performance statistics. */
    mem5.nAlloc++;
    mem5.totalAlloc += iFullSz;
    mem5.totalExcess += iFullSz - nByte;
    mem5.currentCount++;
    mem5.currentOut += iFullSz;
    if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
    if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
  
  #ifdef SQLITE_DEBUG
    /* Make sure the allocated memory does not assume that it is set to zero
    ** or retains a value from a previous allocation */
    memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
  #endif
  
    /* Return a pointer to the allocated memory. */
    return (void*)&mem5.zPool[i*mem5.szAtom];
  }
  
  /*
  ** Free an outstanding memory allocation.
  */
  static void memsys5FreeUnsafe(void *pOld){
    u32 size, iLogsize;
    int iBlock;
  
    /* Set iBlock to the index of the block pointed to by pOld in 
    ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
    */
    iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
  
    /* Check that the pointer pOld points to a valid, non-free block. */
    assert( iBlock>=0 && iBlock<mem5.nBlock );
    assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
    assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
  
    iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
    size = 1<<iLogsize;
    assert( iBlock+size-1<(u32)mem5.nBlock );
  
    mem5.aCtrl[iBlock] |= CTRL_FREE;
    mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
    assert( mem5.currentCount>0 );
    assert( mem5.currentOut>=(size*mem5.szAtom) );
    mem5.currentCount--;
    mem5.currentOut -= size*mem5.szAtom;
    assert( mem5.currentOut>0 || mem5.currentCount==0 );
    assert( mem5.currentCount>0 || mem5.currentOut==0 );
  
    mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
    while( ALWAYS(iLogsize<LOGMAX) ){
      int iBuddy;
      if( (iBlock>>iLogsize) & 1 ){
        iBuddy = iBlock - size;
      }else{
        iBuddy = iBlock + size;
      }
      assert( iBuddy>=0 );
      if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
      if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
      memsys5Unlink(iBuddy, iLogsize);
      iLogsize++;
      if( iBuddy<iBlock ){
        mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
        mem5.aCtrl[iBlock] = 0;
        iBlock = iBuddy;
      }else{
        mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
        mem5.aCtrl[iBuddy] = 0;
      }
      size *= 2;
    }
  
  #ifdef SQLITE_DEBUG
    /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
    ** not used after being freed */
    memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
  #endif
  
    memsys5Link(iBlock, iLogsize);
  }
  
  /*
  ** Allocate nBytes of memory.
  */
  static void *memsys5Malloc(int nBytes){
    sqlite3_int64 *p = 0;
    if( nBytes>0 ){
      memsys5Enter();
      p = memsys5MallocUnsafe(nBytes);
      memsys5Leave();
    }
    return (void*)p; 
  }
  
  /*
  ** Free memory.
  **
  ** The outer layer memory allocator prevents this routine from
  ** being called with pPrior==0.
  */
  static void memsys5Free(void *pPrior){
    assert( pPrior!=0 );
    memsys5Enter();
    memsys5FreeUnsafe(pPrior);
    memsys5Leave();  
  }
  
  /*
  ** Change the size of an existing memory allocation.
  **
  ** The outer layer memory allocator prevents this routine from
  ** being called with pPrior==0.  
  **
  ** nBytes is always a value obtained from a prior call to
  ** memsys5Round().  Hence nBytes is always a non-negative power
  ** of two.  If nBytes==0 that means that an oversize allocation
  ** (an allocation larger than 0x40000000) was requested and this
  ** routine should return 0 without freeing pPrior.
  */
  static void *memsys5Realloc(void *pPrior, int nBytes){
    int nOld;
    void *p;
    assert( pPrior!=0 );
    assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
    assert( nBytes>=0 );
    if( nBytes==0 ){
      return 0;
    }
    nOld = memsys5Size(pPrior);
    if( nBytes<=nOld ){
      return pPrior;
    }
    memsys5Enter();
    p = memsys5MallocUnsafe(nBytes);
    if( p ){
      memcpy(p, pPrior, nOld);
      memsys5FreeUnsafe(pPrior);
    }
    memsys5Leave();
    return p;
  }
  
  /*
  ** Round up a request size to the next valid allocation size.  If
  ** the allocation is too large to be handled by this allocation system,
  ** return 0.
  **
  ** All allocations must be a power of two and must be expressed by a
  ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
  ** or 1073741824 bytes.
  */
  static int memsys5Roundup(int n){
    int iFullSz;
    if( n > 0x40000000 ) return 0;
    for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
    return iFullSz;
  }
  
  /*
  ** Return the ceiling of the logarithm base 2 of iValue.
  **
  ** Examples:   memsys5Log(1) -> 0
  **             memsys5Log(2) -> 1
  **             memsys5Log(4) -> 2
  **             memsys5Log(5) -> 3
  **             memsys5Log(8) -> 3
  **             memsys5Log(9) -> 4
  */
  static int memsys5Log(int iValue){
    int iLog;
    for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
    return iLog;
  }
  
  /*
  ** Initialize the memory allocator.
  **
  ** This routine is not threadsafe.  The caller must be holding a mutex
  ** to prevent multiple threads from entering at the same time.
  */
  static int memsys5Init(void *NotUsed){
    int ii;            /* Loop counter */
    int nByte;         /* Number of bytes of memory available to this allocator */
    u8 *zByte;         /* Memory usable by this allocator */
    int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
    int iOffset;       /* An offset into mem5.aCtrl[] */
  
    UNUSED_PARAMETER(NotUsed);
  
    /* For the purposes of this routine, disable the mutex */
    mem5.mutex = 0;
  
    /* The size of a Mem5Link object must be a power of two.  Verify that
    ** this is case.
    */
    assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
  
    nByte = sqlite3GlobalConfig.nHeap;
    zByte = (u8*)sqlite3GlobalConfig.pHeap;
    assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
  
    /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
    nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
    mem5.szAtom = (1<<nMinLog);
    while( (int)sizeof(Mem5Link)>mem5.szAtom ){
      mem5.szAtom = mem5.szAtom << 1;
    }
  
    mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
    mem5.zPool = zByte;
    mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
  
    for(ii=0; ii<=LOGMAX; ii++){
      mem5.aiFreelist[ii] = -1;
    }
  
    iOffset = 0;
    for(ii=LOGMAX; ii>=0; ii--){
      int nAlloc = (1<<ii);
      if( (iOffset+nAlloc)<=mem5.nBlock ){
        mem5.aCtrl[iOffset] = ii | CTRL_FREE;
        memsys5Link(iOffset, ii);
        iOffset += nAlloc;
      }
      assert((iOffset+nAlloc)>mem5.nBlock);
    }
  
    /* If a mutex is required for normal operation, allocate one */
    if( sqlite3GlobalConfig.bMemstat==0 ){
      mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
    }
  
    return SQLITE_OK;
  }
  
  /*
  ** Deinitialize this module.
  */
  static void memsys5Shutdown(void *NotUsed){
    UNUSED_PARAMETER(NotUsed);
    mem5.mutex = 0;
    return;
  }
  
  #ifdef SQLITE_TEST
  /*
  ** Open the file indicated and write a log of all unfreed memory 
  ** allocations into that log.
  */
  void sqlite3Memsys5Dump(const char *zFilename){
    FILE *out;
    int i, j, n;
    int nMinLog;
  
    if( zFilename==0 || zFilename[0]==0 ){
      out = stdout;
    }else{
      out = fopen(zFilename, "w");
      if( out==0 ){
        fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                        zFilename);
        return;
      }
    }
    memsys5Enter();
    nMinLog = memsys5Log(mem5.szAtom);
    for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
      for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
      fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
    }
    fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
    fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
    fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
    fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
    fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
    fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
    fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
    fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
    memsys5Leave();
    if( out==stdout ){
      fflush(stdout);
    }else{
      fclose(out);
    }
  }
  #endif
  
  /*
  ** This routine is the only routine in this file with external 
  ** linkage. It returns a pointer to a static sqlite3_mem_methods
  ** struct populated with the memsys5 methods.
  */
  const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
    static const sqlite3_mem_methods memsys5Methods = {
       memsys5Malloc,
       memsys5Free,
       memsys5Realloc,
       memsys5Size,
       memsys5Roundup,
       memsys5Init,
       memsys5Shutdown,
       0
    };
    return &memsys5Methods;
  }
  
  #endif /* SQLITE_ENABLE_MEMSYS5 */