6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
#include "cartesian_function.h"
#include "../shared/poincare_helpers.h"
#include <float.h>
#include <cmath>
using namespace Poincare;
using namespace Shared;
namespace Graph {
CartesianFunction::CartesianFunction(const char * text, KDColor color) :
Shared::Function(text, color),
m_displayDerivative(false)
{
}
bool CartesianFunction::displayDerivative() {
return m_displayDerivative;
}
void CartesianFunction::setDisplayDerivative(bool display) {
m_displayDerivative = display;
}
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
Poincare::Expression * abscissa = new Poincare::Approximation<double>(x);
Poincare::Expression * args[2] = {expression(context)->clone(), abscissa};
Poincare::Derivative derivative(args, false); // derivative takes ownership of abscissa and the clone of expression
/* TODO: when we will simplify derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(&derivative, *context);
}
double CartesianFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
Poincare::Expression * x = new Poincare::Approximation<double>(start);
Poincare::Expression * y = new Poincare::Approximation<double>(end);
Poincare::Expression * args[3] = {expression(context)->clone(), x, y};
Poincare::Integral integral(args, false); // Integral takes ownership of args
/* TODO: when we will simplify integral, we might want to simplify the
* integral here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
return PoincareHelpers::ApproximateToScalar<double>(&integral, *context);
}
Expression::Coordinate2D CartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
return expression(context)->nextMinimum(symbol(), start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
Expression::Coordinate2D CartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
return expression(context)->nextMaximum(symbol(), start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
double CartesianFunction::nextRootFrom(double start, double step, double max, Context * context) const {
return expression(context)->nextRoot(symbol(), start, step, max, *context, Preferences::sharedPreferences()->angleUnit());
}
Expression::Coordinate2D CartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, const Shared::Function * function) const {
return expression(context)->nextIntersection(symbol(), start, step, max, *context, Preferences::sharedPreferences()->angleUnit(), function->expression(context));
}
char CartesianFunction::symbol() const {
return 'x';
}
}
|