Blame view

emulateur/epsilon-nofrendo/poincare/src/integer.cpp 19.4 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
  #include <poincare/integer.h>
  #include <poincare/ieee754.h>
  #include <poincare/layout_engine.h>
  #include <cmath>
  #include <utility>
  extern "C" {
  #include <stdlib.h>
  #include <string.h>
  #include <assert.h>
  }
  #include <cmath>
  #include <poincare/ieee754.h>
  #include <utility>
  
  namespace Poincare {
  
  static inline int max(int x, int y) { return (x>y ? x : y); }
  
  uint8_t log2(Integer::native_uint_t v) {
    constexpr int nativeUnsignedIntegerBitCount = 8*sizeof(Integer::native_uint_t);
    static_assert(nativeUnsignedIntegerBitCount < 256, "uint8_t cannot contain the log2 of a native_uint_t");
    for (uint8_t i=0; i<nativeUnsignedIntegerBitCount; i++) {
      if (v < ((Integer::native_uint_t)1<<i)) {
        return i;
      }
    }
    return 32;
  }
  
  static inline char char_from_digit(Integer::native_uint_t digit) {
    return '0'+digit;
  }
  
  static inline int8_t sign(bool negative) {
    return 1 - 2*(int8_t)negative;
  }
  
  // Constructors
  
  static_assert(sizeof(Integer::double_native_int_t) == 2*sizeof(Integer::native_int_t), "double_native_int_t type has not the right size compared to native_int_t");
  static_assert(sizeof(Integer::native_int_t) == sizeof(Integer::native_uint_t), "native_int_t type has not the right size compared to native_uint_t");
  
  Integer::Integer(double_native_int_t i) {
    double_native_uint_t j = i < 0 ? -i : i;
    native_uint_t * digits = (native_uint_t *)&j;
    native_uint_t leastSignificantDigit = *digits;
    native_uint_t mostSignificantDigit = *(digits+1);
    m_numberOfDigits = (mostSignificantDigit == 0) ? 1 : 2;
    if (m_numberOfDigits == 1) {
      m_digit = leastSignificantDigit;
    } else {
      native_uint_t * digits = new native_uint_t [2];
      digits[0] = leastSignificantDigit;
      digits[1] = mostSignificantDigit;
      m_digits = digits;
    }
    m_negative = i < 0;
  }
  
  /* Caution: string is NOT guaranteed to be NULL-terminated! */
  Integer::Integer(const char * digits, bool negative) :
    Integer(0)
  {
    if (digits != nullptr && digits[0] == '-') {
      negative = true;
      digits++;
    }
  
    Integer result = Integer(0);
  
    if (digits != nullptr) {
      Integer base = Integer(10);
      while (*digits >= '0' && *digits <= '9') {
        result = Multiplication(result, base);
        result = Addition(result, Integer(*digits-'0'));
        digits++;
      }
    }
  
    *this = std::move(result);
  
    if (isZero()) {
      negative = false;
    }
    m_negative = negative;
  }
  
  Integer Integer::exponent(int fractionalPartLength, const char * exponent, int exponentLength, bool exponentNegative) {
    Integer base = Integer(10);
    Integer power = Integer(0);
    for (int i = 0; i < exponentLength; i++) {
      power = Multiplication(power, base);
      power = Addition(power, Integer(*exponent-'0'));
      exponent++;
    }
    if (exponentNegative) {
      power.setNegative(true);
    }
    return Subtraction(Integer(fractionalPartLength), power);
  }
  
  Integer Integer::numerator(const char * integralPart, int integralPartLength, const char * fractionalPart, int fractionalPartLength, bool negative, Integer * exponent) {
    Integer base = Integer(10);
    Integer numerator = Integer(integralPart, negative);
    for (int i = 0; i < fractionalPartLength; i++) {
      numerator = Multiplication(numerator, base);
      numerator = Addition(numerator, Integer(*fractionalPart-'0'));
      fractionalPart++;
    }
    if (exponent->isNegative()) {
      while (!exponent->isEqualTo(Integer(0))) {
        numerator = Multiplication(numerator, base);
        *exponent = Addition(*exponent, Integer(1));
      }
    }
    return numerator;
  }
  
  Integer Integer::denominator(Integer * exponent) {
    Integer base = Integer(10);
    Integer denominator = Integer(1);
    if (!exponent->isNegative()) {
      while (!exponent->isEqualTo(Integer(0))) {
        denominator = Multiplication(denominator, base);
        *exponent = Subtraction(*exponent, Integer(1));
      }
    }
    return denominator;
  }
  
  Integer::~Integer() {
    releaseDynamicIvars();
  }
  
  Integer::Integer(Integer && other) {
    // Pilfer other's data
    if (other.usesImmediateDigit()) {
      m_digit = other.m_digit;
    } else {
      m_digits = other.m_digits;
    }
    m_numberOfDigits = other.m_numberOfDigits;
    m_negative = other.m_negative;
  
    // Reset other
    other.m_digit = 0;
    other.m_numberOfDigits = 1;
    other.m_negative = 0;
  }
  
  Integer::Integer(const Integer& other) {
    // Copy other's data
    if (other.usesImmediateDigit()) {
      m_digit = other.m_digit;
    } else {
      native_uint_t * digits = new native_uint_t [other.m_numberOfDigits];
      for (int i=0; i<other.m_numberOfDigits; i++) {
        digits[i] = other.m_digits[i];
      }
      m_digits = digits;
    }
    m_numberOfDigits = other.m_numberOfDigits;
    m_negative = other.m_negative;
  }
  
  Integer& Integer::operator=(Integer && other) {
    if (this != &other) {
      releaseDynamicIvars();
      // Pilfer other's ivars
      if (other.usesImmediateDigit()) {
        m_digit = other.m_digit;
      } else {
        m_digits = other.m_digits;
      }
      m_numberOfDigits = other.m_numberOfDigits;
      m_negative = other.m_negative;
  
      // Reset other
      other.m_digit = 0;
      other.m_numberOfDigits = 1;
      other.m_negative = 0;
    }
    return *this;
  }
  
  Integer& Integer::operator=(const Integer& other) {
    if (this != &other) {
      releaseDynamicIvars();
      // Copy other's ivars
      if (other.usesImmediateDigit()) {
        m_digit = other.m_digit;
      } else {
        native_uint_t * digits = new native_uint_t [other.m_numberOfDigits];
        for (int i=0; i<other.m_numberOfDigits; i++) {
          digits[i] = other.m_digits[i];
        }
        m_digits = digits;
      }
      m_numberOfDigits = other.m_numberOfDigits;
      m_negative = other.m_negative;
    }
    return *this;
  }
  
  void Integer::setNegative(bool negative) {
    if (isZero()) { // Zero cannot be negative
      return;
    }
    m_negative = negative;
  }
  
  // Comparison
  
  int Integer::NaturalOrder(const Integer & i, const Integer & j) {
    if (i.isNegative() && !j.isNegative()) {
      return -1;
    }
    if (!i.isNegative() && j.isNegative()) {
      return 1;
    }
    return ::Poincare::sign(i.isNegative())*ucmp(i, j);
  }
  
  bool Integer::isEqualTo(const Integer & other) const {
    return (NaturalOrder(*this, other) == 0);
  }
  
  bool Integer::isLowerThan(const Integer & other) const {
    return (NaturalOrder(*this, other) < 0);
  }
  
  // Arithmetic
  
  Integer Integer::Addition(const Integer & a, const Integer & b) {
    return addition(a, b, false);
  }
  
  Integer Integer::Subtraction(const Integer & a, const Integer & b) {
    return addition(a, b, true);
  }
  
  Integer Integer::Multiplication(const Integer & a, const Integer & b) {
    assert(sizeof(double_native_uint_t) == 2*sizeof(native_uint_t));
    uint16_t productSize = a.m_numberOfDigits + b.m_numberOfDigits;
    native_uint_t * digits = new native_uint_t [productSize];
    memset(digits, 0, productSize*sizeof(native_uint_t));
  
    double_native_uint_t carry = 0;
    for (uint16_t i=0; i<a.m_numberOfDigits; i++) {
      double_native_uint_t aDigit = a.digit(i);
      carry = 0;
      for (uint16_t j=0; j<b.m_numberOfDigits; j++) {
        double_native_uint_t bDigit = b.digit(j);
        /* The fact that aDigit and bDigit are double_native is very important,
         * otherwise the product might end up being computed on single_native size
         * and then zero-padded. */
        double_native_uint_t p = aDigit*bDigit + carry + (double_native_uint_t)(digits[i+j]); // TODO: Prove it cannot overflow double_native type
        native_uint_t * l = (native_uint_t *)&p;
        digits[i+j] = l[0];
        carry = l[1];
      }
      digits[i+b.m_numberOfDigits] += carry;
    }
  
    while (digits[productSize-1] == 0 && productSize>1) {
      productSize--;
      /* At this point we could realloc m_digits to a smaller size. */
    }
  
    return Integer(digits, productSize, a.m_negative != b.m_negative);
  }
  
  Integer Integer::Factorial(const Integer & i) {
    Integer j = Integer(2);
    Integer result = Integer(1);
    while (!i.isLowerThan(j)) {
      result = Multiplication(j, result);
      j = Addition(j, Integer(1));
    }
    return result;
  }
  
  IntegerDivision Integer::Division(const Integer & numerator, const Integer & denominator) {
    if (!numerator.isNegative() && !denominator.isNegative()) {
      return udiv(numerator, denominator);
    }
    Integer absNumerator = numerator;
    absNumerator.setNegative(false);
    Integer absDenominator = denominator;
    absDenominator.setNegative(false);
    IntegerDivision usignedDiv = udiv(absNumerator, absDenominator);
    if (usignedDiv.remainder.isEqualTo(Integer(0))) {
      if (!numerator.isNegative() || !denominator.isNegative()) {
        usignedDiv.quotient.setNegative(true);
      }
      return usignedDiv;
    }
    if (numerator.isNegative()) {
      if (denominator.isNegative()) {
        usignedDiv.remainder.setNegative(true);
        usignedDiv.quotient = Addition(usignedDiv.quotient, Integer(1));
        usignedDiv.remainder = Integer::Subtraction(usignedDiv.remainder, denominator);
     } else {
        usignedDiv.quotient.setNegative(true);
        usignedDiv.quotient = Subtraction(usignedDiv.quotient, Integer(1));
        usignedDiv.remainder = Integer::Subtraction(denominator, usignedDiv.remainder);
      }
    } else {
      assert(denominator.isNegative());
      usignedDiv.quotient.setNegative(true);
    }
    return usignedDiv;
  }
  
  Integer Integer::Power(const Integer & i, const Integer & j) {
    // TODO: optimize with dichotomia
    assert(!j.isNegative());
    Integer index = j;
    Integer result = Integer(1);
    while (!index.isEqualTo(Integer(0))) {
      result = Multiplication(result, i);
      index = Subtraction(index, Integer(1));
    }
    return result;
  }
  
  int Integer::numberOfDigitsWithoutSign(const Integer & i) {
    int numberOfDigits = 1;
    Integer copy = i;
    copy.setNegative(false);
    IntegerDivision d = Integer::Division(copy, Integer(10));
    while (!d.quotient.isZero()) {
      copy = d.quotient;
      d = Integer::Division(copy, Integer(10));
      numberOfDigits++;
    }
    return numberOfDigits;
  }
  
  // Private methods
  
    /* WARNING: This constructor takes ownership of the digits array! */
  Integer::Integer(const native_uint_t * digits, uint16_t numberOfDigits, bool negative) :
      m_numberOfDigits(numberOfDigits),
      m_negative(negative)
  {
    assert(digits != nullptr);
    if (numberOfDigits == 1) {
      m_digit = digits[0];
      delete[] digits;
      if (isZero()) {
        // Normalize zero
        m_negative = false;
      }
    } else {
      assert(numberOfDigits > 1);
      m_digits = digits;
    }
  }
  
  void Integer::releaseDynamicIvars() {
    if (!usesImmediateDigit()) {
      assert(m_digits != nullptr);
      delete[] m_digits;
    }
  }
  
  int8_t Integer::ucmp(const Integer & a, const Integer & b) {
    if (a.m_numberOfDigits < b.m_numberOfDigits) {
      return -1;
    } else if (a.m_numberOfDigits > b.m_numberOfDigits) {
      return 1;
    }
    for (uint16_t i = 0; i < a.m_numberOfDigits; i++) {
      // Digits are stored most-significant last
      native_uint_t aDigit = a.digit(a.m_numberOfDigits-i-1);
      native_uint_t bDigit = b.digit(b.m_numberOfDigits-i-1);
      if (aDigit < bDigit) {
        return -1;
      } else if (aDigit > bDigit) {
        return 1;
      }
    }
    return 0;
  }
  
  Integer Integer::usum(const Integer & a, const Integer & b, bool subtract, bool outputNegative) {
    uint16_t size = max(a.m_numberOfDigits, b.m_numberOfDigits);
    if (!subtract) {
      // Addition can overflow
      size += 1;
    }
    native_uint_t * digits = new native_uint_t [size];
    bool carry = false;
    for (uint16_t i = 0; i<size; i++) {
      native_uint_t aDigit = (i >= a.m_numberOfDigits ? 0 : a.digit(i));
      native_uint_t bDigit = (i >= b.m_numberOfDigits ? 0 : b.digit(i));
      native_uint_t result = (subtract ? aDigit - bDigit - carry : aDigit + bDigit + carry);
      digits[i] = result;
      if (subtract) {
        carry = (aDigit < result) || (carry && aDigit == result); // There's been an underflow
      } else {
        carry = (aDigit > result) || (bDigit > result); // There's been an overflow
      }
    }
    while (digits[size-1] == 0 && size>1) {
      size--;
      // We could realloc digits to a smaller size. Probably not worth the trouble.
    }
    return Integer(digits, size, outputNegative);
  }
  
  
  Integer Integer::addition(const Integer & a, const Integer & b, bool inverseBNegative) {
    bool bNegative = (inverseBNegative ? !b.m_negative : b.m_negative);
    if (a.m_negative == bNegative) {
      return usum(a, b, false, a.m_negative);
    } else {
      /* The signs are different, this is in fact a subtraction
       * s = a+b = (abs(a)-abs(b) OR abs(b)-abs(a))
       * 1/abs(a)>abs(b) : s = sign*udiff(a, b)
       * 2/abs(b)>abs(a) : s = sign*udiff(b, a)
       * sign? sign of the greater! */
      if (ucmp(a, b) >= 0) {
        return usum(a, b, true, a.m_negative);
      } else {
        return usum(b, a, true, bNegative);
      }
    }
  }
  
  Integer Integer::IntegerWithHalfDigitAtIndex(half_native_uint_t halfDigit, int index) {
    assert(halfDigit != 0);
    half_native_uint_t * digits = (half_native_uint_t *)new native_uint_t [(index+1)/2];
    memset(digits, 0, (index+1)/2*sizeof(native_uint_t));
    digits[index-1] = halfDigit;
    int indexInBase32 = index%2 == 1 ? index/2+1 : index/2;
    return Integer((native_uint_t *)digits, indexInBase32, false);
  }
  
  IntegerDivision Integer::udiv(const Integer & numerator, const Integer & denominator) {
    /* Modern Computer Arithmetic, Richard P. Brent and Paul Zimmermann
     * (Algorithm 1.6) */
    assert(!denominator.isZero());
    if (numerator.isLowerThan(denominator)) {
      IntegerDivision div = {.quotient = 0, .remainder = numerator};
      return div;
    }
  
    Integer A = numerator;
    Integer B = denominator;
    native_int_t base = 1 << 16;
    // TODO: optimize by just swifting digit and finding 2^kB that makes B normalized
    native_int_t d = base/(native_int_t)(B.halfDigit(B.numberOfHalfDigits()-1)+1);
    A = Multiplication(Integer(d), A);
    B = Multiplication(Integer(d), B);
  
    int n = B.numberOfHalfDigits();
    int m = A.numberOfHalfDigits()-n;
    half_native_uint_t * qDigits = (half_native_uint_t *)new native_uint_t [m/2+1];
    memset(qDigits, 0, (m/2+1)*sizeof(native_uint_t));
    Integer betam = IntegerWithHalfDigitAtIndex(1, m+1);
    Integer betaMB = Multiplication(betam, B); // TODO: can swift all digits by m! B.swift16(mg)
    if (!A.isLowerThan(betaMB)) {
      qDigits[m] = 1;
      A = Subtraction(A, betaMB);
    }
    for (int j = m-1; j >= 0; j--) {
      native_uint_t qj2 = ((native_uint_t)A.halfDigit(n+j)*base+(native_uint_t)A.halfDigit(n+j-1))/(native_uint_t)B.halfDigit(n-1);
      half_native_uint_t baseMinus1 = (1 << 16) -1;
      qDigits[j] = qj2 < (native_uint_t)baseMinus1 ? (half_native_uint_t)qj2 : baseMinus1;
      Integer factor = qDigits[j] > 0 ? IntegerWithHalfDigitAtIndex(qDigits[j], j+1) : Integer(0);
      A = Subtraction(A, Multiplication(factor, B));
      Integer m = Multiplication(IntegerWithHalfDigitAtIndex(1, j+1), B);
      while (A.isLowerThan(Integer(0))) {
        qDigits[j] = qDigits[j]-1;
        A = Addition(A, m);
      }
    }
    int qNumberOfDigits = m+1;
    while (qDigits[qNumberOfDigits-1] == 0 && qNumberOfDigits > 1) {
      qNumberOfDigits--;
      // We could realloc digits to a smaller size. Probably not worth the trouble.
    }
    int qNumberOfDigitsInBase32 = qNumberOfDigits%2 == 1 ? qNumberOfDigits/2+1 : qNumberOfDigits/2;
    IntegerDivision div = {.quotient = Integer((native_uint_t *)qDigits, qNumberOfDigitsInBase32, false), .remainder = A};
    if (d != 1 && !div.remainder.isZero()) {
      div.remainder = udiv(div.remainder, Integer(d)).quotient;
    }
    return div;
  }
  
  template<typename T>
  T Integer::approximate() const {
    if (isZero()) {
      /* This special case for 0 is needed, because the current algorithm assumes
       * that the big integer is non zero, thus puts the exponent to 126 (integer
       * area), the issue is that when the mantissa is 0, a "shadow bit" is
       * assumed to be there, thus 126 0x000000 is equal to 0.5 and not zero.
       */
      T result = m_negative ? -0.0 : 0.0;
      return result;
    }
    assert(sizeof(T) == 4 || sizeof(T) == 8);
    /* We're generating an IEEE 754 compliant float(double).
    * We can tell that:
    * - the sign depends on m_negative
    * - the exponent is the length of our BigInt, in bits - 1 + 127 (-1+1023);
    * - the mantissa is the beginning of our BigInt, discarding the first bit
    */
  
    native_uint_t lastDigit = digit(m_numberOfDigits-1);
    uint8_t numberOfBitsInLastDigit = log2(lastDigit);
  
    bool sign = m_negative;
  
    uint16_t exponent = IEEE754<T>::exponentOffset();
    /* Escape case if the exponent is too big to be stored */
    if ((m_numberOfDigits-1)*32+numberOfBitsInLastDigit-1> IEEE754<T>::maxExponent()-IEEE754<T>::exponentOffset()) {
      return INFINITY;
    }
    exponent += (m_numberOfDigits-1)*32;
    exponent += numberOfBitsInLastDigit-1;
  
    uint64_t mantissa = 0;
    /* Shift the most significant int to the left of the mantissa. The most
     * significant 1 will be ignore at the end when inserting the mantissa in
     * the resulting uint64_t (as required by IEEE754). */
    assert(IEEE754<T>::size()-numberOfBitsInLastDigit >= 0 && IEEE754<T>::size()-numberOfBitsInLastDigit < 64); // Shift operator behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted left operand
    mantissa |= ((uint64_t)lastDigit << (IEEE754<T>::size()-numberOfBitsInLastDigit));
    int digitIndex = 2;
    int numberOfBits = numberOfBitsInLastDigit;
    /* Complete the mantissa by inserting, from left to right, every digit of the
     * Integer from the most significant one to the last from. We break when
     * the mantissa is complete to avoid undefined right shifting (Shift operator
     * behavior is undefined if the right operand is negative, or greater than or
     * equal to the length in bits of the promoted left operand). */
    while (m_numberOfDigits >= digitIndex && numberOfBits < IEEE754<T>::size()) {
      lastDigit = digit(m_numberOfDigits-digitIndex);
      numberOfBits += 32;
      if (IEEE754<T>::size() > numberOfBits) {
        assert(IEEE754<T>::size()-numberOfBits > 0 && IEEE754<T>::size()-numberOfBits < 64);
        mantissa |= ((uint64_t)lastDigit << (IEEE754<T>::size()-numberOfBits));
      } else {
        mantissa |= ((uint64_t)lastDigit >> (numberOfBits-IEEE754<T>::size()));
      }
      digitIndex++;
    }
  
    T result = IEEE754<T>::buildFloat(sign, exponent, mantissa);
  
    /* If exponent is 255 and the float is undefined, we have exceed IEEE 754
     * representable float. */
    if (exponent == IEEE754<T>::maxExponent() && std::isnan(result)) {
      return INFINITY;
    }
    return result;
  }
  
  int Integer::writeTextInBuffer(char * buffer, int bufferSize) const {
    if (bufferSize == 0) {
      return -1;
    }
    buffer[bufferSize-1] = 0;
    /* If the integer is too long, this method may be too slow.
     * Experimentally, we can display at most integer whose number of digits is
     * around 25. */
    if (m_numberOfDigits > 25) {
      return strlcpy(buffer, "undef", bufferSize);
    }
  
    Integer base = Integer(10);
    Integer abs = *this;
    abs.setNegative(false);
    IntegerDivision d = udiv(abs, base);
    int size = 0;
    if (bufferSize == 1) {
      return 0;
    }
    if (isEqualTo(Integer(0))) {
      buffer[size++] = '0';
    } else if (isNegative()) {
      buffer[size++] = '-';
    }
    while (!(d.remainder.isEqualTo(Integer(0)) &&
          d.quotient.isEqualTo(Integer(0)))) {
      char c = char_from_digit(d.remainder.digit(0));
      if (size >= bufferSize-1) {
        return strlcpy(buffer, "undef", bufferSize);
      }
      buffer[size++] = c;
      d = Division(d.quotient, base);
    }
    buffer[size] = 0;
  
    // Flip the string
    for (int i=m_negative, j=size-1 ; i < j ; i++, j--) {
      char c = buffer[i];
      buffer[i] = buffer[j];
      buffer[j] = c;
    }
    return size;
  }
  
  ExpressionLayout * Integer::createLayout() const {
    char buffer[255];
    int numberOfChars = writeTextInBuffer(buffer, 255);
    return LayoutEngine::createStringLayout(buffer, numberOfChars);
  }
  
  template float Poincare::Integer::approximate<float>() const;
  template double Poincare::Integer::approximate<double>() const;
  
  }