6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
|
#include <quiz.h>
#include <poincare.h>
#include <poincare/arithmetic.h>
#include <assert.h>
#include <utility>
#if POINCARE_TESTS_PRINT_EXPRESSIONS
#include "../src/expression_debug.h"
#include <iostream>
using namespace std;
#endif
using namespace Poincare;
void assert_gcd_equals_to(Integer a, Integer b, Integer c) {
#if POINCARE_TESTS_PRINT_EXPRESSIONS
cout << "---- GCD ----" << endl;
cout << "gcd(" << a.approximate<float>();
cout << ", " << b.approximate<float>() << ") = ";
#endif
Integer gcd = Arithmetic::GCD(&a, &b);
#if POINCARE_TESTS_PRINT_EXPRESSIONS
cout << gcd.approximate<float>() << endl;
#endif
assert(gcd.isEqualTo(c));
}
void assert_lcm_equals_to(Integer a, Integer b, Integer c) {
#if POINCARE_TESTS_PRINT_EXPRESSIONS
cout << "---- LCM ----" << endl;
cout << "lcm(" << a.approximate<float>();
cout << ", " << b.approximate<float>() << ") = ";
#endif
Integer lcm = Arithmetic::LCM(&a, &b);
#if POINCARE_TESTS_PRINT_EXPRESSIONS
cout << lcm.approximate<float>() << endl;
#endif
assert(lcm.isEqualTo(c));
}
void assert_prime_factorization_equals_to(Integer a, int * factors, int * coefficients, int length) {
Integer outputFactors[100];
Integer outputCoefficients[100];
#if POINCARE_TESTS_PRINT_EXPRESSIONS
cout << "---- Primes factorization ----" << endl;
cout << "Decomp(" << a.approximate<float>() << ") = ";
#endif
Arithmetic::PrimeFactorization(&a, outputFactors, outputCoefficients, 10);
#if POINCARE_TESTS_PRINT_EXPRESSIONS
print_prime_factorization(outputFactors, outputCoefficients, 10);
#endif
for (int index = 0; index < length; index++) {
if (outputCoefficients[index].isEqualTo(Integer(0))) {
break;
}
/* Cheat: instead of comparing to integers, we compare their approximations
* (the relation between integers and their approximation is a surjection,
* however different integers are really likely to have different
* approximations... */
assert(outputFactors[index].approximate<float>() == Integer(factors[index]).approximate<float>());
assert(outputCoefficients[index].approximate<float>() == Integer(coefficients[index]).approximate<float>());
}
}
QUIZ_CASE(poincare_arithmetic) {
assert_gcd_equals_to(Integer(11), Integer(121), Integer(11));
assert_gcd_equals_to(Integer(-256), Integer(321), Integer(1));
assert_gcd_equals_to(Integer(-8), Integer(-40), Integer(8));
assert_gcd_equals_to(Integer("1234567899876543456", true), Integer("234567890098765445678"), Integer(2));
assert_gcd_equals_to(Integer("45678998789"), Integer("1461727961248"), Integer("45678998789"));
assert_lcm_equals_to(Integer(11), Integer(121), Integer(121));
assert_lcm_equals_to(Integer(-31), Integer(52), Integer(1612));
assert_lcm_equals_to(Integer(-8), Integer(-40), Integer(40));
assert_lcm_equals_to(Integer("1234567899876543456", true), Integer("234567890098765445678"), Integer("144794993728852353909143567804987191584"));
assert_lcm_equals_to(Integer("45678998789"), Integer("1461727961248"), Integer("1461727961248"));
int factors0[5] = {2,3,5,79,1319};
int coefficients0[5] = {2,1,1,1,1};
assert_prime_factorization_equals_to(Integer(6252060), factors0, coefficients0, 5);
int factors1[3] = {3,2969, 6907};
int coefficients1[3] = {1,1,1};
assert_prime_factorization_equals_to(Integer(61520649), factors1, coefficients1, 3);
int factors2[3] = {2,5, 7};
int coefficients2[3] = {2,4,2};
assert_prime_factorization_equals_to(Integer(122500), factors2, coefficients2, 3);
int factors3[7] = {3,7,11, 13, 19, 3607, 3803};
int coefficients3[7] = {4,2,2,2,2,2,2};
assert_prime_factorization_equals_to(Integer("5513219850886344455940081"), factors3, coefficients3, 7);
}
|