Blame view

build4/epsilon-master/python/src/py/parse.c 45.5 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
  /*
   * This file is part of the MicroPython project, http://micropython.org/
   *
   * The MIT License (MIT)
   *
   * Copyright (c) 2013-2017 Damien P. George
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  
  #include <stdbool.h>
  #include <stdint.h>
  #include <stdio.h>
  #include <unistd.h> // for ssize_t
  #include <assert.h>
  #include <string.h>
  
  #include "py/lexer.h"
  #include "py/parse.h"
  #include "py/parsenum.h"
  #include "py/runtime.h"
  #include "py/objint.h"
  #include "py/objstr.h"
  #include "py/builtin.h"
  
  #if MICROPY_ENABLE_COMPILER
  
  #define RULE_ACT_ARG_MASK       (0x0f)
  #define RULE_ACT_KIND_MASK      (0x30)
  #define RULE_ACT_ALLOW_IDENT    (0x40)
  #define RULE_ACT_ADD_BLANK      (0x80)
  #define RULE_ACT_OR             (0x10)
  #define RULE_ACT_AND            (0x20)
  #define RULE_ACT_LIST           (0x30)
  
  #define RULE_ARG_KIND_MASK      (0xf000)
  #define RULE_ARG_ARG_MASK       (0x0fff)
  #define RULE_ARG_TOK            (0x1000)
  #define RULE_ARG_RULE           (0x2000)
  #define RULE_ARG_OPT_RULE       (0x3000)
  
  // (un)comment to use rule names; for debugging
  //#define USE_RULE_NAME (1)
  
  enum {
  // define rules with a compile function
  #define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
      RULE_const_object, // special node for a constant, generic Python object
  
  // define rules without a compile function
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) RULE_##rule,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  };
  
  // Define an array of actions corresponding to each rule
  STATIC const uint8_t rule_act_table[] = {
  #define or(n)                   (RULE_ACT_OR | n)
  #define and(n)                  (RULE_ACT_AND | n)
  #define and_ident(n)            (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
  #define and_blank(n)            (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
  #define one_or_more             (RULE_ACT_LIST | 2)
  #define list                    (RULE_ACT_LIST | 1)
  #define list_with_end           (RULE_ACT_LIST | 3)
  
  #define DEF_RULE(rule, comp, kind, ...) kind,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  
      0, // RULE_const_object
  
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) kind,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  
  #undef or
  #undef and
  #undef and_ident
  #undef and_blank
  #undef one_or_more
  #undef list
  #undef list_with_end
  };
  
  // Define the argument data for each rule, as a combined array
  STATIC const uint16_t rule_arg_combined_table[] = {
  #define tok(t)                  (RULE_ARG_TOK | MP_TOKEN_##t)
  #define rule(r)                 (RULE_ARG_RULE | RULE_##r)
  #define opt_rule(r)             (RULE_ARG_OPT_RULE | RULE_##r)
  
  #define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...)  __VA_ARGS__,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  
  #undef tok
  #undef rule
  #undef opt_rule
  };
  
  // Macro to create a list of N identifiers where N is the number of variable arguments to the macro
  #define RULE_EXPAND(x) x
  #define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule))
  #define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__))
  #define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, ...) __VA_ARGS__
  #define RULE_PADDING_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r,
  
  // Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table
  enum {
  #define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  };
  
  // Macro to compute the start of a rule in rule_arg_combined_table
  #define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule))
  #define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__))
  #define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) _13
  #define RULE_ARG_OFFSET_IDS(r) PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r,
  
  // Use the above enum values to create a table of offsets for each rule's arg
  // data, which indexes rule_arg_combined_table.  The offsets require 9 bits of
  // storage but only the lower 8 bits are stored here.  The 9th bit is computed
  // in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant.
  STATIC const uint8_t rule_arg_offset_table[] = {
  #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
      0, // RULE_const_object
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  };
  
  // Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table
  static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 =
  #define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  0;
  
  #if USE_RULE_NAME
  // Define an array of rule names corresponding to each rule
  STATIC const char *const rule_name_table[] = {
  #define DEF_RULE(rule, comp, kind, ...) #rule,
  #define DEF_RULE_NC(rule, kind, ...)
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
      "", // RULE_const_object
  #define DEF_RULE(rule, comp, kind, ...)
  #define DEF_RULE_NC(rule, kind, ...) #rule,
  #include "py/grammar.h"
  #undef DEF_RULE
  #undef DEF_RULE_NC
  };
  #endif
  
  typedef struct _rule_stack_t {
      size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number
      size_t rule_id : 8; // this must be large enough to fit largest rule number
      size_t arg_i; // this dictates the maximum nodes in a "list" of things
  } rule_stack_t;
  
  typedef struct _mp_parse_chunk_t {
      size_t alloc;
      union {
          size_t used;
          struct _mp_parse_chunk_t *next;
      } union_;
      byte data[];
  } mp_parse_chunk_t;
  
  typedef struct _parser_t {
      size_t rule_stack_alloc;
      size_t rule_stack_top;
      rule_stack_t *rule_stack;
  
      size_t result_stack_alloc;
      size_t result_stack_top;
      mp_parse_node_t *result_stack;
  
      mp_lexer_t *lexer;
  
      mp_parse_tree_t tree;
      mp_parse_chunk_t *cur_chunk;
  
      #if MICROPY_COMP_CONST
      mp_map_t consts;
      #endif
  } parser_t;
  
  STATIC const uint16_t *get_rule_arg(uint8_t r_id) {
      size_t off = rule_arg_offset_table[r_id];
      if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) {
          off |= 0x100;
      }
      return &rule_arg_combined_table[off];
  }
  
  STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
      // use a custom memory allocator to store parse nodes sequentially in large chunks
  
      mp_parse_chunk_t *chunk = parser->cur_chunk;
  
      if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
          // not enough room at end of previously allocated chunk so try to grow
          mp_parse_chunk_t *new_data = (mp_parse_chunk_t*)m_renew_maybe(byte, chunk,
              sizeof(mp_parse_chunk_t) + chunk->alloc,
              sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
          if (new_data == NULL) {
              // could not grow existing memory; shrink it to fit previous
              (void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
                  sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
              chunk->alloc = chunk->union_.used;
              chunk->union_.next = parser->tree.chunk;
              parser->tree.chunk = chunk;
              chunk = NULL;
          } else {
              // could grow existing memory
              chunk->alloc += num_bytes;
          }
      }
  
      if (chunk == NULL) {
          // no previous chunk, allocate a new chunk
          size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
          if (alloc < num_bytes) {
              alloc = num_bytes;
          }
          chunk = (mp_parse_chunk_t*)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
          chunk->alloc = alloc;
          chunk->union_.used = 0;
          parser->cur_chunk = chunk;
      }
  
      byte *ret = chunk->data + chunk->union_.used;
      chunk->union_.used += num_bytes;
      return ret;
  }
  
  STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) {
      if (parser->rule_stack_top >= parser->rule_stack_alloc) {
          rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
          parser->rule_stack = rs;
          parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
      }
      rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
      rs->src_line = src_line;
      rs->rule_id = rule_id;
      rs->arg_i = arg_i;
  }
  
  STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
      assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
      size_t rule_id = arg & RULE_ARG_ARG_MASK;
      push_rule(parser, parser->lexer->tok_line, rule_id, 0);
  }
  
  STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) {
      parser->rule_stack_top -= 1;
      uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id;
      *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
      *src_line = parser->rule_stack[parser->rule_stack_top].src_line;
      return rule_id;
  }
  
  bool mp_parse_node_is_const_false(mp_parse_node_t pn) {
      return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_FALSE)
          || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) == 0);
  }
  
  bool mp_parse_node_is_const_true(mp_parse_node_t pn) {
      return MP_PARSE_NODE_IS_TOKEN_KIND(pn, MP_TOKEN_KW_TRUE)
          || (MP_PARSE_NODE_IS_SMALL_INT(pn) && MP_PARSE_NODE_LEAF_SMALL_INT(pn) != 0);
  }
  
  bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
      if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
          *o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
          return true;
      } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
          // nodes are 32-bit pointers, but need to extract 64-bit object
          *o = (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
          #else
          *o = (mp_obj_t)pns->nodes[0];
          #endif
          return MP_OBJ_IS_INT(*o);
      } else {
          return false;
      }
  }
  
  int mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
      if (MP_PARSE_NODE_IS_NULL(*pn)) {
          *nodes = NULL;
          return 0;
      } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
          *nodes = pn;
          return 1;
      } else {
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
          if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
              *nodes = pn;
              return 1;
          } else {
              *nodes = pns->nodes;
              return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
          }
      }
  }
  
  #if MICROPY_DEBUG_PRINTERS
  void mp_parse_node_print(mp_parse_node_t pn, size_t indent) {
      if (MP_PARSE_NODE_IS_STRUCT(pn)) {
          printf("[% 4d] ", (int)((mp_parse_node_struct_t*)pn)->source_line);
      } else {
          printf("       ");
      }
      for (size_t i = 0; i < indent; i++) {
          printf(" ");
      }
      if (MP_PARSE_NODE_IS_NULL(pn)) {
          printf("NULL\n");
      } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
          mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
          printf("int(" INT_FMT ")\n", arg);
      } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
          uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
          switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
              case MP_PARSE_NODE_ID: printf("id(%s)\n", qstr_str(arg)); break;
              case MP_PARSE_NODE_STRING: printf("str(%s)\n", qstr_str(arg)); break;
              case MP_PARSE_NODE_BYTES: printf("bytes(%s)\n", qstr_str(arg)); break;
              default:
                  assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
                  printf("tok(%u)\n", (uint)arg); break;
          }
      } else {
          // node must be a mp_parse_node_struct_t
          mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
          if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
              #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
              printf("literal const(%016llx)\n", (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32));
              #else
              printf("literal const(%p)\n", (mp_obj_t)pns->nodes[0]);
              #endif
          } else {
              size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
              #if USE_RULE_NAME
              printf("%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
              #else
              printf("rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
              #endif
              for (size_t i = 0; i < n; i++) {
                  mp_parse_node_print(pns->nodes[i], indent + 2);
              }
          }
      }
  }
  #endif // MICROPY_DEBUG_PRINTERS
  
  /*
  STATIC void result_stack_show(parser_t *parser) {
      printf("result stack, most recent first\n");
      for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
          mp_parse_node_print(parser->result_stack[i], 0);
      }
  }
  */
  
  STATIC mp_parse_node_t pop_result(parser_t *parser) {
      assert(parser->result_stack_top > 0);
      return parser->result_stack[--parser->result_stack_top];
  }
  
  STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
      assert(parser->result_stack_top > pos);
      return parser->result_stack[parser->result_stack_top - 1 - pos];
  }
  
  STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
      if (parser->result_stack_top >= parser->result_stack_alloc) {
          mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
          parser->result_stack = stack;
          parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
      }
      parser->result_stack[parser->result_stack_top++] = pn;
  }
  
  STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
      mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
      pn->source_line = src_line;
      #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
      // nodes are 32-bit pointers, but need to store 64-bit object
      pn->kind_num_nodes = RULE_const_object | (2 << 8);
      pn->nodes[0] = (uint64_t)obj;
      pn->nodes[1] = (uint64_t)obj >> 32;
      #else
      pn->kind_num_nodes = RULE_const_object | (1 << 8);
      pn->nodes[0] = (uintptr_t)obj;
      #endif
      return (mp_parse_node_t)pn;
  }
  
  STATIC mp_parse_node_t mp_parse_node_new_small_int_checked(parser_t *parser, mp_obj_t o_val) {
      (void)parser;
      mp_int_t val = MP_OBJ_SMALL_INT_VALUE(o_val);
      #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
      // A parse node is only 32-bits and the small-int value must fit in 31-bits
      if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) {
          return make_node_const_object(parser, 0, o_val);
      }
      #endif
      return mp_parse_node_new_small_int(val);
  }
  
  STATIC void push_result_token(parser_t *parser, uint8_t rule_id) {
      mp_parse_node_t pn;
      mp_lexer_t *lex = parser->lexer;
      if (lex->tok_kind == MP_TOKEN_NAME) {
          qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
          #if MICROPY_COMP_CONST
          // if name is a standalone identifier, look it up in the table of dynamic constants
          mp_map_elem_t *elem;
          if (rule_id == RULE_atom
              && (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) {
              if (MP_OBJ_IS_SMALL_INT(elem->value)) {
                  pn = mp_parse_node_new_small_int_checked(parser, elem->value);
              } else {
                  pn = make_node_const_object(parser, lex->tok_line, elem->value);
              }
          } else {
              pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
          }
          #else
          (void)rule_id;
          pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
          #endif
      } else if (lex->tok_kind == MP_TOKEN_INTEGER) {
          mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
          if (MP_OBJ_IS_SMALL_INT(o)) {
              pn = mp_parse_node_new_small_int_checked(parser, o);
          } else {
              pn = make_node_const_object(parser, lex->tok_line, o);
          }
      } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
          mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex);
          pn = make_node_const_object(parser, lex->tok_line, o);
      } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) {
          // Don't automatically intern all strings/bytes.  doc strings (which are usually large)
          // will be discarded by the compiler, and so we shouldn't intern them.
          qstr qst = MP_QSTR_NULL;
          if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
              // intern short strings
              qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
          } else {
              // check if this string is already interned
              qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
          }
          if (qst != MP_QSTR_NULL) {
              // qstr exists, make a leaf node
              pn = mp_parse_node_new_leaf(lex->tok_kind == MP_TOKEN_STRING ? MP_PARSE_NODE_STRING : MP_PARSE_NODE_BYTES, qst);
          } else {
              // not interned, make a node holding a pointer to the string/bytes object
              mp_obj_t o = mp_obj_new_str_copy(
                  lex->tok_kind == MP_TOKEN_STRING ? &mp_type_str : &mp_type_bytes,
                  (const byte*)lex->vstr.buf, lex->vstr.len);
              pn = make_node_const_object(parser, lex->tok_line, o);
          }
      } else {
          pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
      }
      push_result_node(parser, pn);
  }
  
  #if MICROPY_COMP_MODULE_CONST
  STATIC const mp_rom_map_elem_t mp_constants_table[] = {
      #if MICROPY_PY_UERRNO
      { MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_uerrno) },
      #endif
      #if MICROPY_PY_UCTYPES
      { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
      #endif
      // Extra constants as defined by a port
      MICROPY_PORT_CONSTANTS
  };
  STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
  #endif
  
  STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args);
  
  #if MICROPY_COMP_CONST_FOLDING
  STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) {
      if (rule_id == RULE_or_test
          || rule_id == RULE_and_test) {
          // folding for binary logical ops: or and
          size_t copy_to = *num_args;
          for (size_t i = copy_to; i > 0;) {
              mp_parse_node_t pn = peek_result(parser, --i);
              parser->result_stack[parser->result_stack_top - copy_to] = pn;
              if (i == 0) {
                  // always need to keep the last value
                  break;
              }
              if (rule_id == RULE_or_test) {
                  if (mp_parse_node_is_const_true(pn)) {
                      //
                      break;
                  } else if (!mp_parse_node_is_const_false(pn)) {
                      copy_to -= 1;
                  }
              } else {
                  // RULE_and_test
                  if (mp_parse_node_is_const_false(pn)) {
                      break;
                  } else if (!mp_parse_node_is_const_true(pn)) {
                      copy_to -= 1;
                  }
              }
          }
          copy_to -= 1; // copy_to now contains number of args to pop
  
          // pop and discard all the short-circuited expressions
          for (size_t i = 0; i < copy_to; ++i) {
              pop_result(parser);
          }
          *num_args -= copy_to;
  
          // we did a complete folding if there's only 1 arg left
          return *num_args == 1;
  
      } else if (rule_id == RULE_not_test_2) {
          // folding for unary logical op: not
          mp_parse_node_t pn = peek_result(parser, 0);
          if (mp_parse_node_is_const_false(pn)) {
              pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE);
          } else if (mp_parse_node_is_const_true(pn)) {
              pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE);
          } else {
              return false;
          }
          pop_result(parser);
          push_result_node(parser, pn);
          return true;
      }
  
      return false;
  }
  
  STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) {
      // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
      // it does not do partial folding, eg 1 + 2 + x -> 3 + x
  
      mp_obj_t arg0;
      if (rule_id == RULE_expr
          || rule_id == RULE_xor_expr
          || rule_id == RULE_and_expr) {
          // folding for binary ops: | ^ &
          mp_parse_node_t pn = peek_result(parser, num_args - 1);
          if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
              return false;
          }
          mp_binary_op_t op;
          if (rule_id == RULE_expr) {
              op = MP_BINARY_OP_OR;
          } else if (rule_id == RULE_xor_expr) {
              op = MP_BINARY_OP_XOR;
          } else {
              op = MP_BINARY_OP_AND;
          }
          for (ssize_t i = num_args - 2; i >= 0; --i) {
              pn = peek_result(parser, i);
              mp_obj_t arg1;
              if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
                  return false;
              }
              arg0 = mp_binary_op(op, arg0, arg1);
          }
      } else if (rule_id == RULE_shift_expr
          || rule_id == RULE_arith_expr
          || rule_id == RULE_term) {
          // folding for binary ops: << >> + - * / % //
          mp_parse_node_t pn = peek_result(parser, num_args - 1);
          if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
              return false;
          }
          for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
              pn = peek_result(parser, i - 1);
              mp_obj_t arg1;
              if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
                  return false;
              }
              mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
              static const uint8_t token_to_op[] = {
                  MP_BINARY_OP_ADD,
                  MP_BINARY_OP_SUBTRACT,
                  MP_BINARY_OP_MULTIPLY,
                  255,//MP_BINARY_OP_POWER,
                  255,//MP_BINARY_OP_TRUE_DIVIDE,
                  MP_BINARY_OP_FLOOR_DIVIDE,
                  MP_BINARY_OP_MODULO,
                  255,//MP_BINARY_OP_LESS
                  MP_BINARY_OP_LSHIFT,
                  255,//MP_BINARY_OP_MORE
                  MP_BINARY_OP_RSHIFT,
              };
              mp_binary_op_t op = token_to_op[tok - MP_TOKEN_OP_PLUS];
              if (op == (mp_binary_op_t)255) {
                  return false;
              }
              int rhs_sign = mp_obj_int_sign(arg1);
              if (op <= MP_BINARY_OP_RSHIFT) {
                  // << and >> can't have negative rhs
                  if (rhs_sign < 0) {
                      return false;
                  }
              } else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
                  // % and // can't have zero rhs
                  if (rhs_sign == 0) {
                      return false;
                  }
              }
              arg0 = mp_binary_op(op, arg0, arg1);
          }
      } else if (rule_id == RULE_factor_2) {
          // folding for unary ops: + - ~
          mp_parse_node_t pn = peek_result(parser, 0);
          if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
              return false;
          }
          mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
          mp_unary_op_t op;
          if (tok == MP_TOKEN_OP_PLUS) {
              op = MP_UNARY_OP_POSITIVE;
          } else if (tok == MP_TOKEN_OP_MINUS) {
              op = MP_UNARY_OP_NEGATIVE;
          } else {
              assert(tok == MP_TOKEN_OP_TILDE); // should be
              op = MP_UNARY_OP_INVERT;
          }
          arg0 = mp_unary_op(op, arg0);
  
      #if MICROPY_COMP_CONST
      } else if (rule_id == RULE_expr_stmt) {
          mp_parse_node_t pn1 = peek_result(parser, 0);
          if (!MP_PARSE_NODE_IS_NULL(pn1)
              && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
              || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
              // this node is of the form <x> = <y>
              mp_parse_node_t pn0 = peek_result(parser, 1);
              if (MP_PARSE_NODE_IS_ID(pn0)
                  && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
                  && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0])
                  && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const
                  && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren)
                  ) {
                  // code to assign dynamic constants: id = const(value)
  
                  // get the id
                  qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
  
                  // get the value
                  mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0];
                  mp_obj_t value;
                  if (!mp_parse_node_get_int_maybe(pn_value, &value)) {
                      mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
                          "constant must be an integer");
                      mp_obj_exception_add_traceback(exc, parser->lexer->source_name,
                          ((mp_parse_node_struct_t*)pn1)->source_line, MP_QSTR_NULL);
                      nlr_raise(exc);
                  }
  
                  // store the value in the table of dynamic constants
                  mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
                  assert(elem->value == MP_OBJ_NULL);
                  elem->value = value;
  
                  // If the constant starts with an underscore then treat it as a private
                  // variable and don't emit any code to store the value to the id.
                  if (qstr_str(id)[0] == '_') {
                      pop_result(parser); // pop const(value)
                      pop_result(parser); // pop id
                      push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass"
                      return true;
                  }
  
                  // replace const(value) with value
                  pop_result(parser);
                  push_result_node(parser, pn_value);
  
                  // finished folding this assignment, but we still want it to be part of the tree
                  return false;
              }
          }
          return false;
      #endif
  
      #if MICROPY_COMP_MODULE_CONST
      } else if (rule_id == RULE_atom_expr_normal) {
          mp_parse_node_t pn0 = peek_result(parser, 1);
          mp_parse_node_t pn1 = peek_result(parser, 0);
          if (!(MP_PARSE_NODE_IS_ID(pn0)
              && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
              return false;
          }
          // id1.id2
          // look it up in constant table, see if it can be replaced with an integer
          mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1;
          assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
          qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
          qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
          mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
          if (elem == NULL) {
              return false;
          }
          mp_obj_t dest[2];
          mp_load_method_maybe(elem->value, q_attr, dest);
          if (!(dest[0] != MP_OBJ_NULL && MP_OBJ_IS_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) {
              return false;
          }
          arg0 = dest[0];
      #endif
  
      } else {
          return false;
      }
  
      // success folding this rule
  
      for (size_t i = num_args; i > 0; i--) {
          pop_result(parser);
      }
      if (MP_OBJ_IS_SMALL_INT(arg0)) {
          push_result_node(parser, mp_parse_node_new_small_int_checked(parser, arg0));
      } else {
          // TODO reuse memory for parse node struct?
          push_result_node(parser, make_node_const_object(parser, 0, arg0));
      }
  
      return true;
  }
  #endif
  
  STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
      // optimise away parenthesis around an expression if possible
      if (rule_id == RULE_atom_paren) {
          // there should be just 1 arg for this rule
          mp_parse_node_t pn = peek_result(parser, 0);
          if (MP_PARSE_NODE_IS_NULL(pn)) {
              // need to keep parenthesis for ()
          } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
              // need to keep parenthesis for (a, b, ...)
          } else {
              // parenthesis around a single expression, so it's just the expression
              return;
          }
      }
  
      #if MICROPY_COMP_CONST_FOLDING
      if (fold_logical_constants(parser, rule_id, &num_args)) {
          // we folded this rule so return straight away
          return;
      }
      if (fold_constants(parser, rule_id, num_args)) {
          // we folded this rule so return straight away
          return;
      }
      #endif
  
      mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
      pn->source_line = src_line;
      pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
      for (size_t i = num_args; i > 0; i--) {
          pn->nodes[i - 1] = pop_result(parser);
      }
      push_result_node(parser, (mp_parse_node_t)pn);
  }
  
  mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
  
      // initialise parser and allocate memory for its stacks
  
      parser_t parser;
  
      parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
      parser.rule_stack_top = 0;
      parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc);
  
      parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
      parser.result_stack_top = 0;
      parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc);
  
      parser.lexer = lex;
  
      parser.tree.chunk = NULL;
      parser.cur_chunk = NULL;
  
      #if MICROPY_COMP_CONST
      mp_map_init(&parser.consts, 0);
      #endif
  
      // work out the top-level rule to use, and push it on the stack
      size_t top_level_rule;
      switch (input_kind) {
          case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break;
          case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break;
          default: top_level_rule = RULE_file_input;
      }
      push_rule(&parser, lex->tok_line, top_level_rule, 0);
  
      // parse!
  
      bool backtrack = false;
  
      for (;;) {
          next_rule:
          if (parser.rule_stack_top == 0) {
              break;
          }
  
          // Pop the next rule to process it
          size_t i; // state for the current rule
          size_t rule_src_line; // source line for the first token matched by the current rule
          uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line);
          uint8_t rule_act = rule_act_table[rule_id];
          const uint16_t *rule_arg = get_rule_arg(rule_id);
          size_t n = rule_act & RULE_ACT_ARG_MASK;
  
          #if 0
          // debugging
          printf("depth=" UINT_FMT " ", parser.rule_stack_top);
          for (int j = 0; j < parser.rule_stack_top; ++j) {
              printf(" ");
          }
          printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack);
          #endif
  
          switch (rule_act & RULE_ACT_KIND_MASK) {
              case RULE_ACT_OR:
                  if (i > 0 && !backtrack) {
                      goto next_rule;
                  } else {
                      backtrack = false;
                  }
                  for (; i < n; ++i) {
                      uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK;
                      if (kind == RULE_ARG_TOK) {
                          if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) {
                              push_result_token(&parser, rule_id);
                              mp_lexer_to_next(lex);
                              goto next_rule;
                          }
                      } else {
                          assert(kind == RULE_ARG_RULE);
                          if (i + 1 < n) {
                              push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule
                          }
                          push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule
                          goto next_rule;
                      }
                  }
                  backtrack = true;
                  break;
  
              case RULE_ACT_AND: {
  
                  // failed, backtrack if we can, else syntax error
                  if (backtrack) {
                      assert(i > 0);
                      if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
                          // an optional rule that failed, so continue with next arg
                          push_result_node(&parser, MP_PARSE_NODE_NULL);
                          backtrack = false;
                      } else {
                          // a mandatory rule that failed, so propagate backtrack
                          if (i > 1) {
                              // already eaten tokens so can't backtrack
                              goto syntax_error;
                          } else {
                              goto next_rule;
                          }
                      }
                  }
  
                  // progress through the rule
                  for (; i < n; ++i) {
                      if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                          // need to match a token
                          mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK;
                          if (lex->tok_kind == tok_kind) {
                              // matched token
                              if (tok_kind == MP_TOKEN_NAME) {
                                  push_result_token(&parser, rule_id);
                              }
                              mp_lexer_to_next(lex);
                          } else {
                              // failed to match token
                              if (i > 0) {
                                  // already eaten tokens so can't backtrack
                                  goto syntax_error;
                              } else {
                                  // this rule failed, so backtrack
                                  backtrack = true;
                                  goto next_rule;
                              }
                          }
                      } else {
                          push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule
                          push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule
                          goto next_rule;
                      }
                  }
  
                  assert(i == n);
  
                  // matched the rule, so now build the corresponding parse_node
  
                  #if !MICROPY_ENABLE_DOC_STRING
                  // this code discards lonely statements, such as doc strings
                  if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
                      mp_parse_node_t p = peek_result(&parser, 1);
                      if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p))
                          || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) {
                          pop_result(&parser); // MP_PARSE_NODE_NULL
                          pop_result(&parser); // const expression (leaf or RULE_const_object)
                          // Pushing the "pass" rule here will overwrite any RULE_const_object
                          // entry that was on the result stack, allowing the GC to reclaim
                          // the memory from the const object when needed.
                          push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0);
                          break;
                      }
                  }
                  #endif
  
                  // count number of arguments for the parse node
                  i = 0;
                  size_t num_not_nil = 0;
                  for (size_t x = n; x > 0;) {
                      --x;
                      if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                          mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK;
                          if (tok_kind == MP_TOKEN_NAME) {
                              // only tokens which were names are pushed to stack
                              i += 1;
                              num_not_nil += 1;
                          }
                      } else {
                          // rules are always pushed
                          if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) {
                              num_not_nil += 1;
                          }
                          i += 1;
                      }
                  }
  
                  if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) {
                      // this rule has only 1 argument and should not be emitted
                      mp_parse_node_t pn = MP_PARSE_NODE_NULL;
                      for (size_t x = 0; x < i; ++x) {
                          mp_parse_node_t pn2 = pop_result(&parser);
                          if (pn2 != MP_PARSE_NODE_NULL) {
                              pn = pn2;
                          }
                      }
                      push_result_node(&parser, pn);
                  } else {
                      // this rule must be emitted
  
                      if (rule_act & RULE_ACT_ADD_BLANK) {
                          // and add an extra blank node at the end (used by the compiler to store data)
                          push_result_node(&parser, MP_PARSE_NODE_NULL);
                          i += 1;
                      }
  
                      push_result_rule(&parser, rule_src_line, rule_id, i);
                  }
                  break;
              }
  
              default: {
                  assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST);
  
                  // n=2 is: item item*
                  // n=1 is: item (sep item)*
                  // n=3 is: item (sep item)* [sep]
                  bool had_trailing_sep;
                  if (backtrack) {
                      list_backtrack:
                      had_trailing_sep = false;
                      if (n == 2) {
                          if (i == 1) {
                              // fail on item, first time round; propagate backtrack
                              goto next_rule;
                          } else {
                              // fail on item, in later rounds; finish with this rule
                              backtrack = false;
                          }
                      } else {
                          if (i == 1) {
                              // fail on item, first time round; propagate backtrack
                              goto next_rule;
                          } else if ((i & 1) == 1) {
                              // fail on item, in later rounds; have eaten tokens so can't backtrack
                              if (n == 3) {
                                  // list allows trailing separator; finish parsing list
                                  had_trailing_sep = true;
                                  backtrack = false;
                              } else {
                                  // list doesn't allowing trailing separator; fail
                                  goto syntax_error;
                              }
                          } else {
                              // fail on separator; finish parsing list
                              backtrack = false;
                          }
                      }
                  } else {
                      for (;;) {
                          size_t arg = rule_arg[i & 1 & n];
                          if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                              if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
                                  if (i & 1 & n) {
                                      // separators which are tokens are not pushed to result stack
                                  } else {
                                      push_result_token(&parser, rule_id);
                                  }
                                  mp_lexer_to_next(lex);
                                  // got element of list, so continue parsing list
                                  i += 1;
                              } else {
                                  // couldn't get element of list
                                  i += 1;
                                  backtrack = true;
                                  goto list_backtrack;
                              }
                          } else {
                              assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE);
                              push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule
                              push_rule_from_arg(&parser, arg); // push child of list-rule
                              goto next_rule;
                          }
                      }
                  }
                  assert(i >= 1);
  
                  // compute number of elements in list, result in i
                  i -= 1;
                  if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
                      // don't count separators when they are tokens
                      i = (i + 1) / 2;
                  }
  
                  if (i == 1) {
                      // list matched single item
                      if (had_trailing_sep) {
                          // if there was a trailing separator, make a list of a single item
                          push_result_rule(&parser, rule_src_line, rule_id, i);
                      } else {
                          // just leave single item on stack (ie don't wrap in a list)
                      }
                  } else {
                      push_result_rule(&parser, rule_src_line, rule_id, i);
                  }
                  break;
              }
          }
      }
  
      #if MICROPY_COMP_CONST
      mp_map_deinit(&parser.consts);
      #endif
  
      // truncate final chunk and link into chain of chunks
      if (parser.cur_chunk != NULL) {
          (void)m_renew_maybe(byte, parser.cur_chunk,
              sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
              sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used,
              false);
          parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
          parser.cur_chunk->union_.next = parser.tree.chunk;
          parser.tree.chunk = parser.cur_chunk;
      }
  
      if (
          lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
          || parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
          ) {
      syntax_error:;
          mp_obj_t exc;
          if (lex->tok_kind == MP_TOKEN_INDENT) {
              exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
                  "unexpected indent");
          } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
              exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
                  "unindent does not match any outer indentation level");
          } else {
              exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
                  "invalid syntax");
          }
          // add traceback to give info about file name and location
          // we don't have a 'block' name, so just pass the NULL qstr to indicate this
          mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL);
          nlr_raise(exc);
      }
  
      // get the root parse node that we created
      assert(parser.result_stack_top == 1);
      parser.tree.root = parser.result_stack[0];
  
      // free the memory that we don't need anymore
      m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
      m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
  
      // we also free the lexer on behalf of the caller
      mp_lexer_free(lex);
  
      return parser.tree;
  }
  
  void mp_parse_tree_clear(mp_parse_tree_t *tree) {
      mp_parse_chunk_t *chunk = tree->chunk;
      while (chunk != NULL) {
          mp_parse_chunk_t *next = chunk->union_.next;
          m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
          chunk = next;
      }
  }
  
  #endif // MICROPY_ENABLE_COMPILER