6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
extern "C" {
#include <assert.h>
#include <stdlib.h>
}
#include <poincare/global_context.h>
#include <poincare/matrix.h>
#include <poincare/addition.h>
#include <poincare/decimal.h>
#include <poincare/undefined.h>
#include <poincare/division.h>
#include <poincare/subtraction.h>
#include <poincare/multiplication.h>
#include "layout/matrix_layout.h"
#include <cmath>
#include <float.h>
#include <string.h>
namespace Poincare {
Matrix::Matrix(MatrixData * matrixData) :
DynamicHierarchy()
{
assert(matrixData != nullptr);
m_numberOfOperands = matrixData->numberOfRows()*matrixData->numberOfColumns();
m_numberOfRows = matrixData->numberOfRows();
matrixData->pilferOperands(&m_operands);
for (int i = 0; i < m_numberOfOperands; i++) {
const_cast<Expression *>(m_operands[i])->setParent(this);
}
}
Matrix::Matrix(const Expression * const * operands, int numberOfRows, int numberOfColumns, bool cloneOperands) :
DynamicHierarchy(operands, numberOfRows*numberOfColumns, cloneOperands),
m_numberOfRows(numberOfRows)
{
}
int Matrix::numberOfRows() const {
return m_numberOfRows;
}
int Matrix::numberOfColumns() const {
return numberOfOperands()/m_numberOfRows;
}
Expression::Type Matrix::type() const {
return Type::Matrix;
}
Expression * Matrix::clone() const {
return new Matrix(m_operands, numberOfRows(), numberOfColumns(), true);
}
int Matrix::writeTextInBuffer(char * buffer, int bufferSize, PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
if (bufferSize == 0) {
return -1;
}
buffer[bufferSize-1] = 0;
int currentChar = 0;
if (currentChar >= bufferSize-1) {
return 0;
}
buffer[currentChar++] = '[';
if (currentChar >= bufferSize-1) {
return currentChar;
}
for (int i = 0; i < numberOfRows(); i++) {
buffer[currentChar++] = '[';
if (currentChar >= bufferSize-1) {
return currentChar;
}
currentChar += operand(i*numberOfColumns())->writeTextInBuffer(buffer+currentChar, bufferSize-currentChar, floatDisplayMode, numberOfSignificantDigits);
if (currentChar >= bufferSize-1) {
return currentChar;
}
for (int j = 1; j < numberOfColumns(); j++) {
buffer[currentChar++] = ',';
if (currentChar >= bufferSize-1) {
return currentChar;
}
currentChar += operand(i*numberOfColumns()+j)->writeTextInBuffer(buffer+currentChar, bufferSize-currentChar, floatDisplayMode, numberOfSignificantDigits);
if (currentChar >= bufferSize-1) {
return currentChar;
}
}
currentChar = strlen(buffer);
if (currentChar >= bufferSize-1) {
return currentChar;
}
buffer[currentChar++] = ']';
if (currentChar >= bufferSize-1) {
return currentChar;
}
}
buffer[currentChar++] = ']';
buffer[currentChar] = 0;
return currentChar;
}
int Matrix::polynomialDegree(char symbolName) const {
return -1;
}
void Matrix::rowCanonize(Context & context, AngleUnit angleUnit, Multiplication * determinant) {
// The matrix has to be reduced to be able to spot 0 inside it
for (int i = 0; i < numberOfOperands(); i++) {
editableOperand(i)->deepReduce(context, angleUnit);
}
int m = numberOfRows();
int n = numberOfColumns();
int h = 0; // row pivot
int k = 0; // column pivot
while (h < m && k < n) {
// Find the first non-null pivot
int iPivot = h;
while (iPivot < m && matrixOperand(iPivot, k)->isRationalZero()) {
iPivot++;
}
if (iPivot == m) {
// No non-null coefficient in this column, skip
k++;
// Update determinant: det *= 0
if (determinant) { determinant->addOperand(new Rational(0)); }
} else {
// Swap row h and iPivot
if (iPivot != h) {
for (int col = h; col < n; col++) {
swapOperands(iPivot*n+col, h*n+col);
}
// Update determinant: det *= -1
if (determinant) { determinant->addOperand(new Rational(-1)); }
}
/* Set to 1 M[h][k] by linear combination */
Expression * divisor = matrixOperand(h, k);
// Update determinant: det *= divisor
if (determinant) { determinant->addOperand(divisor->clone()); }
for (int j = k+1; j < n; j++) {
Expression * opHJ = matrixOperand(h, j);
Expression * newOpHJ = new Division(opHJ, divisor->clone(), false);
replaceOperand(opHJ, newOpHJ, false);
newOpHJ->shallowReduce(context, angleUnit);
}
matrixOperand(h, k)->replaceWith(new Rational(1), true);
/* Set to 0 all M[i][j] i != h, j > k by linear combination */
for (int i = 0; i < m; i++) {
if (i == h) { continue; }
Expression * factor = matrixOperand(i, k);
for (int j = k+1; j < n; j++) {
Expression * opIJ = matrixOperand(i, j);
Expression * newOpIJ = new Subtraction(opIJ, new Multiplication(matrixOperand(h, j), factor, true), false);
replaceOperand(opIJ, newOpIJ, false);
newOpIJ->editableOperand(1)->shallowReduce(context, angleUnit);
newOpIJ->shallowReduce(context, angleUnit);
}
matrixOperand(i, k)->replaceWith(new Rational(0), true);
}
h++;
k++;
}
}
}
template<typename T>
void Matrix::ArrayRowCanonize(T * array, int numberOfRows, int numberOfColumns, T * determinant) {
int h = 0; // row pivot
int k = 0; // column pivot
while (h < numberOfRows && k < numberOfColumns) {
// Find the first non-null pivot
int iPivot = h;
while (iPivot < numberOfRows && std::abs(array[iPivot*numberOfColumns+k]) < Expression::epsilon<double>()) {
iPivot++;
}
if (iPivot == numberOfRows) {
// No non-null coefficient in this column, skip
k++;
// Update determinant: det *= 0
if (determinant) { *determinant *= 0.0; }
} else {
// Swap row h and iPivot
if (iPivot != h) {
for (int col = h; col < numberOfColumns; col++) {
// Swap array[iPivot, col] and array[h, col]
T temp = array[iPivot*numberOfColumns+col];
array[iPivot*numberOfColumns+col] = array[h*numberOfColumns+col];
array[h*numberOfColumns+col] = temp;
}
// Update determinant: det *= -1
if (determinant) { *determinant *= -1.0; }
}
/* Set to 1 array[h][k] by linear combination */
T divisor = array[h*numberOfColumns+k];
// Update determinant: det *= divisor
if (determinant) { *determinant *= divisor; }
for (int j = k+1; j < numberOfColumns; j++) {
array[h*numberOfColumns+j] /= divisor;
}
array[h*numberOfColumns+k] = 1;
/* Set to 0 all M[i][j] i != h, j > k by linear combination */
for (int i = 0; i < numberOfRows; i++) {
if (i == h) { continue; }
T factor = array[i*numberOfColumns+k];
for (int j = k+1; j < numberOfColumns; j++) {
array[i*numberOfColumns+j] -= array[h*numberOfColumns+j]*factor;
}
array[i*numberOfColumns+k] = 0;
}
h++;
k++;
}
}
}
ExpressionLayout * Matrix::createLayout(PrintFloat::Mode floatDisplayMode, int numberOfSignificantDigits) const {
ExpressionLayout ** childrenLayouts = new ExpressionLayout * [numberOfOperands()];
for (int i = 0; i < numberOfOperands(); i++) {
childrenLayouts[i] = operand(i)->createLayout(floatDisplayMode, numberOfSignificantDigits);
}
ExpressionLayout * layout = new MatrixLayout(childrenLayouts, numberOfRows(), numberOfColumns(), false);
delete [] childrenLayouts;
return layout;
}
int Matrix::rank(Context & context, AngleUnit angleUnit, bool inPlace) {
Matrix * m = inPlace ? this : static_cast<Matrix *>(clone());
m->rowCanonize(context, angleUnit);
int rank = m->numberOfRows();
int i = rank-1;
while (i >= 0) {
int j = m->numberOfColumns()-1;
while (j >= i && matrixOperand(i,j)->isRationalZero()) {
j--;
}
if (j == i-1) {
rank--;
} else {
break;
}
i--;
}
if (!inPlace) {
delete m;
}
return rank;
}
template<typename T>
int Matrix::ArrayInverse(T * array, int numberOfRows, int numberOfColumns) {
if (numberOfRows != numberOfColumns) {
return -1;
}
int dim = numberOfRows;
/* Create the matrix inv = (A|I) with A the input matrix and I the dim identity matrix */
T * operands = new T[dim*2*dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
operands[i*2*dim+j] = array[i*numberOfColumns+j];
}
for (int j = dim; j < 2*dim; j++) {
operands[i*2*dim+j] = j-dim == i ? 1 : 0;
}
}
ArrayRowCanonize(operands, dim, 2*dim);
// Check inversibility
for (int i = 0; i < dim; i++) {
T one = 1.0;
if (std::abs(operands[i*2*dim+i] - one) > Expression::epsilon<float>()) {
return -2;
}
}
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
array[i*numberOfColumns+j] = operands[i*2*dim+j+dim];
}
}
delete [] operands;
return 0;
}
#if MATRIX_EXACT_REDUCING
Matrix * Matrix::createTranspose() const {
const Expression ** operands = new const Expression * [numberOfOperands()];
for (int i = 0; i < numberOfRows(); i++) {
for (int j = 0; j < numberOfColumns(); j++) {
operands[j*numberOfRows()+i] = operand(i*numberOfColumns()+j);
}
}
// Intentionally swapping dimensions for transpose
Matrix * matrix = new Matrix(operands, numberOfColumns(), numberOfRows(), true);
delete[] operands;
return matrix;
}
Matrix * Matrix::createIdentity(int dim) {
Expression ** operands = new Expression * [dim*dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
if (i == j) {
operands[i*dim+j] = new Rational(1);
} else {
operands[i*dim+j] = new Rational(0);
}
}
}
Matrix * matrix = new Matrix(operands, dim, dim, false);
delete [] operands;
return matrix;
}
Expression * Matrix::createInverse(Context & context, AngleUnit angleUnit) const {
if (numberOfRows() != numberOfColumns()) {
return new Undefined();
}
int dim = numberOfRows();
/* Create the matrix inv = (A|I) with A the input matrix and I the dim identity matrix */
const Expression ** operands = new const Expression * [dim*dim*2];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
operands[i*2*dim+j] = operand(i*dim+j)->clone();
}
for (int j = dim; j < 2*dim; j++) {
operands[i*2*dim+j] = j-dim == i ? new Rational(1) : new Rational(0);
}
}
Matrix * AI = new Matrix(operands, dim, 2*dim, false);
delete[] operands;
AI->rowCanonize(context, angleUnit);
// Check inversibility
for (int i = 0; i < dim; i++) {
if (AI->matrixOperand(i, i)->type() != Type::Rational || !static_cast<Rational *>(AI->matrixOperand(i, i))->isOne()) {
delete AI;
return new Undefined;
}
}
const Expression ** invOperands = new const Expression * [dim*dim];
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
invOperands[i*dim+j] = AI->matrixOperand(i, j+dim);
AI->detachOperandAtIndex(i*2*dim+j+dim);
}
}
Matrix * inverse = new Matrix(invOperands, dim, dim, false);
delete[] invOperands;
delete AI;
return inverse;
}
#endif
template<typename T>
Evaluation<T> * Matrix::templatedApproximate(Context& context, AngleUnit angleUnit) const {
std::complex<T> * operands = new std::complex<T> [numberOfOperands()];
for (int i = 0; i < numberOfOperands(); i++) {
Evaluation<T> * operandEvaluation = operand(i)->privateApproximate(T(), context, angleUnit);
if (operandEvaluation->type() != Evaluation<T>::Type::Complex) {
operands[i] = Complex<T>::Undefined();
} else {
std::complex<T> * c = static_cast<Complex<T> *>(operandEvaluation);
operands[i] = *c;
}
delete operandEvaluation;
}
MatrixComplex<T> * matrix = new MatrixComplex<T>(operands, numberOfRows(), numberOfColumns());
delete[] operands;
return matrix;
}
template int Matrix::ArrayInverse<float>(float *, int, int);
template int Matrix::ArrayInverse<double>(double *, int, int);
template int Matrix::ArrayInverse<std::complex<float>>(std::complex<float> *, int, int);
template int Matrix::ArrayInverse<std::complex<double>>(std::complex<double> *, int, int);
template void Matrix::ArrayRowCanonize<std::complex<float> >(std::complex<float>*, int, int, std::complex<float>*);
template void Matrix::ArrayRowCanonize<std::complex<double> >(std::complex<double>*, int, int, std::complex<double>*);
}
|