6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#include "model.h"
#include "../store.h"
#include "../../shared/poincare_helpers.h"
#include <poincare/decimal.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <math.h>
using namespace Poincare;
using namespace Shared;
namespace Regression {
double Model::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) {
Expression * yExpression = static_cast<Expression *>(new Decimal(y));
PoincareHelpers::Simplify(&yExpression, *context);
Expression * modelExpression = simplifiedExpression(modelCoefficients, context);
double result = modelExpression->nextIntersection('x', xMin, step, xMax, *context, Preferences::sharedPreferences()->angleUnit(), yExpression).abscissa;
delete modelExpression;
delete yExpression;
return result;
}
void Model::fit(Store * store, int series, double * modelCoefficients, Poincare::Context * context) {
if (dataSuitableForFit(store, series)) {
for (int i = 0; i < numberOfCoefficients(); i++) {
modelCoefficients[i] = k_initialCoefficientValue;
}
fitLevenbergMarquardt(store, series, modelCoefficients, context);
} else {
for (int i = 0; i < numberOfCoefficients(); i++) {
modelCoefficients[i] = NAN;
}
}
}
bool Model::dataSuitableForFit(Store * store, int series) const {
if (!store->seriesNumberOfAbscissaeGreaterOrEqualTo(series, numberOfCoefficients())) {
return false;
}
return !store->seriesIsEmpty(series);
}
void Model::fitLevenbergMarquardt(Store * store, int series, double * modelCoefficients, Context * context) {
/* We want to find the best coefficients of the regression to minimize the sum
* of the squares of the difference between a data point and the corresponding
* point of the fitting regression (chi2 function).
* We use the Levenberg-Marquardt algorithm to minimize this chi2 merit
* function.
* The equation to solve is A'*da = B, with A' a damped version of the chi2
* Hessian matrix, da the coefficients increments and B colinear to the
* gradient of chi2.*/
double currentChi2 = chi2(store, series, modelCoefficients);
double lambda = k_initialLambda;
int n = numberOfCoefficients(); // n unknown coefficients
int smallChi2ChangeCounts = 0;
int iterationCount = 0;
while (smallChi2ChangeCounts < k_consecutiveSmallChi2ChangesLimit && iterationCount < k_maxIterations) {
// Create the alpha prime matrix (it is symmetric)
double coefficientsAPrime[Model::k_maxNumberOfCoefficients * Model::k_maxNumberOfCoefficients];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
double alphaPrime = alphaPrimeCoefficient(store, series, modelCoefficients, i, j, lambda);
coefficientsAPrime[i*n+j] = alphaPrime;
if (i != j) {
coefficientsAPrime[j*n+i] = alphaPrime;
}
}
}
// Create the beta matrix
double operandsB[Model::k_maxNumberOfCoefficients];
for (int j = 0; j < n; j++) {
operandsB[j] = betaCoefficient(store, series, modelCoefficients, j);
}
// Compute the equation solution (= vector of coefficients increments)
double modelCoefficientSteps[Model::k_maxNumberOfCoefficients];
if (solveLinearSystem(modelCoefficientSteps, coefficientsAPrime, operandsB, n, context) < 0) {
break;
}
// Compute the new coefficients
double newModelCoefficients[Model::k_maxNumberOfCoefficients];
for (int i = 0; i < n; i++) {
newModelCoefficients[i] = modelCoefficients[i] + modelCoefficientSteps[i];
}
// Compare new chi2 with the previous value
double newChi2 = chi2(store, series, newModelCoefficients);
smallChi2ChangeCounts = (fabs(currentChi2 - newChi2) > k_chi2ChangeCondition) ? 0 : smallChi2ChangeCounts + 1;
if (newChi2 >= currentChi2) {
lambda*= k_lambdaFactor;
} else {
lambda/= k_lambdaFactor;
for (int i = 0; i < n; i++) {
modelCoefficients[i] = newModelCoefficients[i];
}
currentChi2 = newChi2;
}
iterationCount++;
}
}
double Model::chi2(Store * store, int series, double * modelCoefficients) const {
double result = 0.0;
for (int i = 0; i < store->numberOfPairsOfSeries(series); i++) {
double xi = store->get(series, 0, i);
double yi = store->get(series, 1, i);
double difference = yi - evaluate(modelCoefficients, xi);
result += difference * difference;
}
return result;
}
// a'(k,k) = a(k,k) * (1 + lambda)
// a'(k,l) = a(l,k) when (k != l)
double Model::alphaPrimeCoefficient(Store * store, int series, double * modelCoefficients, int k, int l, double lambda) const {
assert(k >= 0 && k < numberOfCoefficients());
assert(l >= 0 && l < numberOfCoefficients());
double result = 0.0;
if (k == l) {
/* The Levengerg method uses a'(k,k) = a(k,k) + lambda.
* The Marquardt method uses a'(k,k) = a(k,k) * (1 + lambda).
* We use a mixed method to try to make the matrix invertible:
* a'(k,k) = a(k,k) * (1 + lambda), but if a'(k,k) is too small,
* a'(k,k) = 2*epsilon so that the inversion method does not detect a'(k,k)
* as a zero. */
result = alphaCoefficient(store, series, modelCoefficients, k, l)*(1.0+lambda);
if (std::fabs(result) < Expression::epsilon<double>()) {
result = 2*Expression::epsilon<double>();
}
} else {
result = alphaCoefficient(store, series, modelCoefficients, l, k);
}
return result;
}
// a(k,l) = sum(0, N-1, derivate(y(xi|a), ak) * derivate(y(xi|a), a))
double Model::alphaCoefficient(Store * store, int series, double * modelCoefficients, int k, int l) const {
assert(k >= 0 && k < numberOfCoefficients());
assert(l >= 0 && l < numberOfCoefficients());
double result = 0.0;
int m = store->numberOfPairsOfSeries(series);
for (int i = 0; i < m; i++) {
double xi = store->get(series, 0, i);
result += partialDerivate(modelCoefficients, k, xi) * partialDerivate(modelCoefficients, l, xi);
}
return result;
}
// b(k) = sum(0, N-1, (yi - y(xi|a)) * derivate(y(xi|a), ak))
double Model::betaCoefficient(Store * store, int series, double * modelCoefficients, int k) const {
assert(k >= 0 && k < numberOfCoefficients());
double result = 0.0;
int m = store->numberOfPairsOfSeries(series); // m equations
for (int i = 0; i < m; i++) {
double xi = store->get(series, 0, i);
double yi = store->get(series, 1, i);
result += (yi - evaluate(modelCoefficients, xi)) * partialDerivate(modelCoefficients, k, xi);
}
return result;
}
int Model::solveLinearSystem(double * solutions, double * coefficients, double * constants, int solutionDimension, Context * context) {
int n = solutionDimension;
assert(n <= k_maxNumberOfCoefficients);
double coefficientsSave[k_maxNumberOfCoefficients * k_maxNumberOfCoefficients];
for (int i = 0; i < n * n; i++) {
coefficientsSave[i] = coefficients[i];
}
int inverseResult = Matrix::ArrayInverse(coefficients, n, n);
int numberOfMatrixModifications = 0;
while (inverseResult < 0 && numberOfMatrixModifications < k_maxMatrixInversionFixIterations) {
/* If the matrix is not invertible, we modify it to try to make
* it invertible by multiplying the diagonal coefficients by 1+i/n. This
* will change the iterative path of the algorithm towards the chi2 minimum,
* but not the final solution itself, as the stopping condition is that chi2
* is at its minimum, so when B is null. */
for (int i = 0; i < n; i ++) {
coefficientsSave[i*n+i] = (1 + ((double)i)/((double)n)) * coefficientsSave[i*n+i];
}
inverseResult = Matrix::ArrayInverse(coefficientsSave, n, n);
numberOfMatrixModifications++;
}
if (inverseResult < 0) {
return - 1;
}
if (numberOfMatrixModifications > 0) {
for (int i = 0; i < n*n; i++) {
coefficients[i] = coefficientsSave[i];
}
}
Multiplication::computeOnArrays<double>(coefficients, constants, solutions, n, n, 1);
return 0;
}
}
|