6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
#include <poincare/prediction_interval.h>
#include <poincare/matrix.h>
#include <poincare/addition.h>
#include <poincare/multiplication.h>
#include <poincare/power.h>
#include <poincare/undefined.h>
#include <poincare/division.h>
#include <poincare/complex.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type PredictionInterval::type() const {
return Type::PredictionInterval;
}
Expression * PredictionInterval::clone() const {
PredictionInterval * a = new PredictionInterval(m_operands, true);
return a;
}
Expression * PredictionInterval::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
Expression * op0 = editableOperand(0);
Expression * op1 = editableOperand(1);
#if MATRIX_EXACT_REDUCING
if (op0->type() == Type::Matrix || op1->type() == Type::Matrix) {
return replaceWith(new Undefined(), true);
}
#endif
if (op0->type() == Type::Rational) {
Rational * r0 = static_cast<Rational *>(op0);
if (r0->numerator().isNegative() || Integer::NaturalOrder(r0->numerator(), r0->denominator()) > 0) {
return replaceWith(new Undefined(), true);
}
}
if (op1->type() == Type::Rational) {
Rational * r1 = static_cast<Rational *>(op1);
if (!r1->denominator().isOne() || r1->numerator().isNegative()) {
return replaceWith(new Undefined(), true);
}
}
if (op0->type() != Type::Rational || op1->type() != Type::Rational) {
return this;
}
Rational * r0 = static_cast<Rational *>(op0);
Rational * r1 = static_cast<Rational *>(op1);
if (!r1->denominator().isOne() || r1->numerator().isNegative() || r0->numerator().isNegative() || Integer::NaturalOrder(r0->numerator(), r0->denominator()) > 0) {
return replaceWith(new Undefined(), true);
}
detachOperand(r0);
detachOperand(r1);
/* [r0-1.96*sqrt(r0*(1-r0)/r1), r0+1.96*sqrt(r0*(1-r0)/r1)]*/
// Compute numerator = r0*(1-r0)
Rational * numerator = new Rational(Rational::Multiplication(*r0, Rational(Integer::Subtraction(r0->denominator(), r0->numerator()), r0->denominator())));
// Compute sqr = sqrt(r0*(1-r0)/r1)
Expression * sqr = new Power(new Division(numerator, r1, false), new Rational(1, 2), false);
Expression * m = new Multiplication(new Rational(196, 100), sqr, false);
const Expression * newOperands[2] = {new Addition(r0, new Multiplication(new Rational(-1), m, false), false), new Addition(r0, m, true),};
Expression * matrix = replaceWith(new Matrix(newOperands, 1, 2, false), true);
return matrix->deepReduce(context, angleUnit);
}
template<typename T>
Expression * PredictionInterval::templatedApproximate(Context& context, AngleUnit angleUnit) const {
Expression * pInput = operand(0)->approximate<T>(context, angleUnit);
Expression * nInput = operand(1)->approximate<T>(context, angleUnit);
if (pInput->type() != Type::Complex || nInput->type() != Type::Complex) {
return new Complex<T>(Complex<T>::Float(NAN));
}
T p = static_cast<Complex<T> *>(pInput)->toScalar();
T n = static_cast<Complex<T> *>(nInput)->toScalar();
delete pInput;
delete nInput;
if (std::isnan(p) || std::isnan(n) || n != (int)n || n < 0 || p < 0 || p > 1) {
return new Complex<T>(Complex<T>::Float(NAN));
}
Expression * operands[2];
operands[0] = new Complex<T>(Complex<T>::Float(p - 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n)));
operands[1] = new Complex<T>(Complex<T>::Float(p + 1.96*std::sqrt(p*(1.0-p))/std::sqrt(n)));
return new Matrix(operands, 1, 2, false);
}
}
|