Blame view

Giac_maj/libtommath-0.39/bn_mp_reduce.c 2.38 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
  #include <tommath.h>
  #ifdef BN_MP_REDUCE_C
  /* LibTomMath, multiple-precision integer library -- Tom St Denis
   *
   * LibTomMath is a library that provides multiple-precision
   * integer arithmetic as well as number theoretic functionality.
   *
   * The library was designed directly after the MPI library by
   * Michael Fromberger but has been written from scratch with
   * additional optimizations in place.
   *
   * The library is free for all purposes without any express
   * guarantee it works.
   *
   * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
   */
  
  /* reduces x mod m, assumes 0 < x < m**2, mu is 
   * precomputed via mp_reduce_setup.
   * From HAC pp.604 Algorithm 14.42
   */
  int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
  {
    mp_int  q;
    int     res, um = m->used;
  
    /* q = x */
    if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
      return res;
    }
  
    /* q1 = x / b**(k-1)  */
    mp_rshd (&q, um - 1);         
  
    /* according to HAC this optimization is ok */
    if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
      if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
        goto CLEANUP;
      }
    } else {
  #ifdef BN_S_MP_MUL_HIGH_DIGS_C
      if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
        goto CLEANUP;
      }
  #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
      if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
        goto CLEANUP;
      }
  #else 
      { 
        res = MP_VAL;
        goto CLEANUP;
      }
  #endif
    }
  
    /* q3 = q2 / b**(k+1) */
    mp_rshd (&q, um + 1);         
  
    /* x = x mod b**(k+1), quick (no division) */
    if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
      goto CLEANUP;
    }
  
    /* q = q * m mod b**(k+1), quick (no division) */
    if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
      goto CLEANUP;
    }
  
    /* x = x - q */
    if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
      goto CLEANUP;
    }
  
    /* If x < 0, add b**(k+1) to it */
    if (mp_cmp_d (x, 0) == MP_LT) {
      mp_set (&q, 1);
      if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
        goto CLEANUP;
      if ((res = mp_add (x, &q, x)) != MP_OKAY)
        goto CLEANUP;
    }
  
    /* Back off if it's too big */
    while (mp_cmp (x, m) != MP_LT) {
      if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
        goto CLEANUP;
      }
    }
    
  CLEANUP:
    mp_clear (&q);
  
    return res;
  }
  #endif
  
  /* $Source: /cvs/libtom/libtommath/bn_mp_reduce.c,v $ */
  /* $Revision: 1.3 $ */
  /* $Date: 2006/03/31 14:18:44 $ */