Blame view

Giac_maj/libtommath-0.39/bn_mp_n_root.c 2.91 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  #include <tommath.h>
  #ifdef BN_MP_N_ROOT_C
  /* LibTomMath, multiple-precision integer library -- Tom St Denis
   *
   * LibTomMath is a library that provides multiple-precision
   * integer arithmetic as well as number theoretic functionality.
   *
   * The library was designed directly after the MPI library by
   * Michael Fromberger but has been written from scratch with
   * additional optimizations in place.
   *
   * The library is free for all purposes without any express
   * guarantee it works.
   *
   * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
   */
  
  /* find the n'th root of an integer 
   *
   * Result found such that (c)**b <= a and (c+1)**b > a 
   *
   * This algorithm uses Newton's approximation 
   * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
   * which will find the root in log(N) time where 
   * each step involves a fair bit.  This is not meant to 
   * find huge roots [square and cube, etc].
   */
  int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
  {
    mp_int  t1, t2, t3;
    int     res, neg;
  
    /* input must be positive if b is even */
    if ((b & 1) == 0 && a->sign == MP_NEG) {
      return MP_VAL;
    }
  
    if ((res = mp_init (&t1)) != MP_OKAY) {
      return res;
    }
  
    if ((res = mp_init (&t2)) != MP_OKAY) {
      goto LBL_T1;
    }
  
    if ((res = mp_init (&t3)) != MP_OKAY) {
      goto LBL_T2;
    }
  
    /* if a is negative fudge the sign but keep track */
    neg     = a->sign;
    a->sign = MP_ZPOS;
  
    /* t2 = 2 */
    mp_set (&t2, 2);
  
    do {
      /* t1 = t2 */
      if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
        goto LBL_T3;
      }
  
      /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
      
      /* t3 = t1**(b-1) */
      if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {   
        goto LBL_T3;
      }
  
      /* numerator */
      /* t2 = t1**b */
      if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {    
        goto LBL_T3;
      }
  
      /* t2 = t1**b - a */
      if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {  
        goto LBL_T3;
      }
  
      /* denominator */
      /* t3 = t1**(b-1) * b  */
      if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {    
        goto LBL_T3;
      }
  
      /* t3 = (t1**b - a)/(b * t1**(b-1)) */
      if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {  
        goto LBL_T3;
      }
  
      if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
        goto LBL_T3;
      }
    }  while (mp_cmp (&t1, &t2) != MP_EQ);
  
    /* result can be off by a few so check */
    for (;;) {
      if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
        goto LBL_T3;
      }
  
      if (mp_cmp (&t2, a) == MP_GT) {
        if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
           goto LBL_T3;
        }
      } else {
        break;
      }
    }
  
    /* reset the sign of a first */
    a->sign = neg;
  
    /* set the result */
    mp_exch (&t1, c);
  
    /* set the sign of the result */
    c->sign = neg;
  
    res = MP_OKAY;
  
  LBL_T3:mp_clear (&t3);
  LBL_T2:mp_clear (&t2);
  LBL_T1:mp_clear (&t1);
    return res;
  }
  #endif
  
  /* $Source: /cvs/libtom/libtommath/bn_mp_n_root.c,v $ */
  /* $Revision: 1.3 $ */
  /* $Date: 2006/03/31 14:18:44 $ */