Blame view

Giac_maj/libtommath-0.39/bn_mp_invmod_slow.c 4.07 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  #include <tommath.h>
  #ifdef BN_MP_INVMOD_SLOW_C
  /* LibTomMath, multiple-precision integer library -- Tom St Denis
   *
   * LibTomMath is a library that provides multiple-precision
   * integer arithmetic as well as number theoretic functionality.
   *
   * The library was designed directly after the MPI library by
   * Michael Fromberger but has been written from scratch with
   * additional optimizations in place.
   *
   * The library is free for all purposes without any express
   * guarantee it works.
   *
   * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
   */
  
  /* hac 14.61, pp608 */
  int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
  {
    mp_int  x, y, u, v, A, B, C, D;
    int     res;
  
    /* b cannot be negative */
    if (b->sign == MP_NEG || mp_iszero(b) == 1) {
      return MP_VAL;
    }
  
    /* init temps */
    if ((res = mp_init_multi(&x, &y, &u, &v, 
                             &A, &B, &C, &D, NULL)) != MP_OKAY) {
       return res;
    }
  
    /* x = a, y = b */
    if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
        goto LBL_ERR;
    }
    if ((res = mp_copy (b, &y)) != MP_OKAY) {
      goto LBL_ERR;
    }
  
    /* 2. [modified] if x,y are both even then return an error! */
    if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
      res = MP_VAL;
      goto LBL_ERR;
    }
  
    /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
    if ((res = mp_copy (&x, &u)) != MP_OKAY) {
      goto LBL_ERR;
    }
    if ((res = mp_copy (&y, &v)) != MP_OKAY) {
      goto LBL_ERR;
    }
    mp_set (&A, 1);
    mp_set (&D, 1);
  
  top:
    /* 4.  while u is even do */
    while (mp_iseven (&u) == 1) {
      /* 4.1 u = u/2 */
      if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
        goto LBL_ERR;
      }
      /* 4.2 if A or B is odd then */
      if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
        /* A = (A+y)/2, B = (B-x)/2 */
        if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
           goto LBL_ERR;
        }
        if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
           goto LBL_ERR;
        }
      }
      /* A = A/2, B = B/2 */
      if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
        goto LBL_ERR;
      }
      if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
  
    /* 5.  while v is even do */
    while (mp_iseven (&v) == 1) {
      /* 5.1 v = v/2 */
      if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
        goto LBL_ERR;
      }
      /* 5.2 if C or D is odd then */
      if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
        /* C = (C+y)/2, D = (D-x)/2 */
        if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
           goto LBL_ERR;
        }
        if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
           goto LBL_ERR;
        }
      }
      /* C = C/2, D = D/2 */
      if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
        goto LBL_ERR;
      }
      if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
  
    /* 6.  if u >= v then */
    if (mp_cmp (&u, &v) != MP_LT) {
      /* u = u - v, A = A - C, B = B - D */
      if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
        goto LBL_ERR;
      }
  
      if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
        goto LBL_ERR;
      }
  
      if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
        goto LBL_ERR;
      }
    } else {
      /* v - v - u, C = C - A, D = D - B */
      if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
        goto LBL_ERR;
      }
  
      if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
        goto LBL_ERR;
      }
  
      if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
        goto LBL_ERR;
      }
    }
  
    /* if not zero goto step 4 */
    if (mp_iszero (&u) == 0)
      goto top;
  
    /* now a = C, b = D, gcd == g*v */
  
    /* if v != 1 then there is no inverse */
    if (mp_cmp_d (&v, 1) != MP_EQ) {
      res = MP_VAL;
      goto LBL_ERR;
    }
  
    /* if its too low */
    while (mp_cmp_d(&C, 0) == MP_LT) {
        if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
           goto LBL_ERR;
        }
    }
    
    /* too big */
    while (mp_cmp_mag(&C, b) != MP_LT) {
        if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
           goto LBL_ERR;
        }
    }
    
    /* C is now the inverse */
    mp_exch (&C, c);
    res = MP_OKAY;
  LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
    return res;
  }
  #endif
  
  /* $Source: /cvs/libtom/libtommath/bn_mp_invmod_slow.c,v $ */
  /* $Revision: 1.3 $ */
  /* $Date: 2006/03/31 14:18:44 $ */