Blame view

Giac_maj/libtommath-0.39/bn_mp_dr_reduce.c 2.37 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  #include <tommath.h>
  #ifdef BN_MP_DR_REDUCE_C
  /* LibTomMath, multiple-precision integer library -- Tom St Denis
   *
   * LibTomMath is a library that provides multiple-precision
   * integer arithmetic as well as number theoretic functionality.
   *
   * The library was designed directly after the MPI library by
   * Michael Fromberger but has been written from scratch with
   * additional optimizations in place.
   *
   * The library is free for all purposes without any express
   * guarantee it works.
   *
   * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
   */
  
  /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
   *
   * Based on algorithm from the paper
   *
   * "Generating Efficient Primes for Discrete Log Cryptosystems"
   *                 Chae Hoon Lim, Pil Joong Lee,
   *          POSTECH Information Research Laboratories
   *
   * The modulus must be of a special format [see manual]
   *
   * Has been modified to use algorithm 7.10 from the LTM book instead
   *
   * Input x must be in the range 0 <= x <= (n-1)**2
   */
  int
  mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
  {
    int      err, i, m;
    mp_word  r;
    mp_digit mu, *tmpx1, *tmpx2;
  
    /* m = digits in modulus */
    m = n->used;
  
    /* ensure that "x" has at least 2m digits */
    if (x->alloc < m + m) {
      if ((err = mp_grow (x, m + m)) != MP_OKAY) {
        return err;
      }
    }
  
  /* top of loop, this is where the code resumes if
   * another reduction pass is required.
   */
  top:
    /* aliases for digits */
    /* alias for lower half of x */
    tmpx1 = x->dp;
  
    /* alias for upper half of x, or x/B**m */
    tmpx2 = x->dp + m;
  
    /* set carry to zero */
    mu = 0;
  
    /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
    for (i = 0; i < m; i++) {
        r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
        *tmpx1++  = (mp_digit)(r & MP_MASK);
        mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
    }
  
    /* set final carry */
    *tmpx1++ = mu;
  
    /* zero words above m */
    for (i = m + 1; i < x->used; i++) {
        *tmpx1++ = 0;
    }
  
    /* clamp, sub and return */
    mp_clamp (x);
  
    /* if x >= n then subtract and reduce again
     * Each successive "recursion" makes the input smaller and smaller.
     */
    if (mp_cmp_mag (x, n) != MP_LT) {
      s_mp_sub(x, n, x);
      goto top;
    }
    return MP_OKAY;
  }
  #endif
  
  /* $Source: /cvs/libtom/libtommath/bn_mp_dr_reduce.c,v $ */
  /* $Revision: 1.3 $ */
  /* $Date: 2006/03/31 14:18:44 $ */