6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
// -*- mode:C++ ; compile-command: "g++ -I.. -g -c solve.cc" -*-
/*
* Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GIAC_SOLVE_H
#define _GIAC_SOLVE_H
#include "first.h"
// GIAC_64VARS is currently compatible with GROEBNER_VARS 15 only
#define GIAC_64VARS
// comment if you don't want the modular algorithm for gbasis with >15 var
//#define GIAC_CHARDEGTYPE
// uncomment if you want degrees as unsigned char (8 bits instead of 15)
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
vecteur lvarfracpow(const gen & e);
std::string print_intvar_counter(GIAC_CONTEXT);
std::string print_realvar_counter(GIAC_CONTEXT);
gen _reset_solve_counter(const gen & args,const context * contextptr);
void set_merge(vecteur & v,const vecteur & w);
bool is_inequation(const gen & g);
gen equal2diff(const gen & g); // rewrite = as -
vecteur protect_sort(const vecteur & res,GIAC_CONTEXT);
vecteur find_singularities(const gen & e,const identificateur & x,int cplxmode,GIAC_CONTEXT);
vecteur protect_find_singularities(const gen & e,const identificateur & x,int cplxmode,GIAC_CONTEXT);
// isolate_mode & 1 is complex_mode, isolate_mode & 2 is 0 for principal sol
vecteur protect_solve(const gen & e,const identificateur & x,int isolate_mode,GIAC_CONTEXT);
vecteur solve(const gen & e,const identificateur & x,int isolate_mode,GIAC_CONTEXT);
vecteur solve(const gen & e,const gen & x,int isolate_mode,GIAC_CONTEXT);
vecteur solve(const vecteur & v,bool complex_mode,GIAC_CONTEXT); // v is a 1-d dense polynomial
void solve(const gen & e,const identificateur & x,vecteur &v,int isolate_mode,GIAC_CONTEXT);
void in_solve(const gen & e,const identificateur & x,vecteur &v,int isolate_mode,GIAC_CONTEXT);
// modular roots, modulo p, p supposed to be prime
// dogcd should be set to true except if you have already done gcd with x^p-x
bool modpolyroot(const vecteur & a,const gen & p,vecteur & v,bool dogcd,GIAC_CONTEXT);
gen solvepostprocess(const gen & g,const gen & x,GIAC_CONTEXT);
// convert solutions to an expression
gen _solve(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_solve ;
gen in_fsolve(vecteur & v,GIAC_CONTEXT);
gen _fsolve(const gen & args,GIAC_CONTEXT);
// also sets iszero to -2 if endpoints have same sign, -1 if err or undef
// 1 if zero found, 2 if sign reversal (no undef),
// set iszero to 0 on entry if only one root
// set to -1 or positive if you want many sign reversals
// -1 means no step specified, positive means nstep specified
vecteur bisection_solver(const gen & equation,const gen & var,const gen & a0,const gen &b0,int & iszero,GIAC_CONTEXT);
// FIXME: implement msolve without GSL
// gen msolve(const gen & f,const vecteur & vars,const vecteur & g,int method,double eps,GIAC_CONTEXT);
extern const unary_function_ptr * const at_fsolve ;
vecteur sxa(const vecteur & sl,const vecteur & x,GIAC_CONTEXT);
vecteur linsolve(const vecteur & sl,const vecteur & x,GIAC_CONTEXT);
gen symb_linsolve(const gen & syst,const gen & vars);
gen _linsolve(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_linsolve ;
void linsolve_u(const matrice & m,const vecteur & y,vecteur & a);
void linsolve_l(const matrice & m,const vecteur & y,vecteur & a);
/*
gen newtona(const gen & f, const gen & x, const gen & arg,int niter1, int niter2, double eps1,double eps2,double prefact1,double prefact2, int & b);
gen newton(const gen & f, const gen & x,const gen & guess,int niter1=5,int niter2=50,double eps1=1e-3,double eps2=1e-12,double prefact1=0.5,double prefact2=1.0);
*/
// if real is true random re-initialization will be real only,
// if xmin<xmax random-reinitialization and boundaries for x are xmin xmax
gen newton(const gen & f, const gen & x,const gen & guess,int niter,double eps1,double eps2,bool real,double xmin,double xmax,double rand_xmin,double rand_xmax,double init_prefactor,GIAC_CONTEXT);
gen _newton(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_newton ;
bool has_num_coeff(const vecteur & v);
bool has_num_coeff(const polynome & p);
bool has_num_coeff(const gen & e);
bool has_mod_coeff(const vecteur & v,gen & modulo);
bool has_mod_coeff(const polynome & p,gen & modulo);
bool has_mod_coeff(const gen & e,gen & modulo);
polynome spoly(const polynome & p,const polynome & q,environment * env);
polynome reduce(const polynome & p,const polynome * it,const polynome * itend,environment * env);
polynome reduce(const polynome & p,const vectpoly & v,environment * env);
void sort_vectpoly(vectpoly::iterator it,vectpoly::iterator itend);
void reduce(vectpoly & res,environment * env);
void change_monomial_order(polynome & p,const gen & order);
vectpoly gbasis(const vectpoly & v,const gen & order,bool with_cocoa,bool with_f5,int & rur,environment * env,GIAC_CONTEXT,bool eliminate_flag); // with_f5 is in fact modular_check
gen remove_equal(const gen & f);
vecteur remove_equal(const_iterateur it,const_iterateur itend);
vecteur gsolve(const vecteur & eq_orig,const vecteur & var,bool complexmode,int evalf_after,GIAC_CONTEXT);
bool vecteur2vector_polynome(const vecteur & eq_in,const vecteur & l,vectpoly & eqp);
vecteur true_lidnt(const gen & g); // lidnt without looking in int/sum/fsolve
gen _greduce(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_greduce ;
gen _gbasis(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_gbasis ;
gen _eliminate(const gen & args,GIAC_CONTEXT);
extern const unary_function_ptr * const at_eliminate ;
gen _in_ideal(const gen & args,GIAC_CONTEXT);
double nan();
gen remove_and(const gen & g,const unary_function_ptr * u);
vecteur solvepreprocess(const gen & args,bool complex_mode,GIAC_CONTEXT);
bool is_idnt_function38(const gen & g);
vecteur lidnt_solve(const gen & g);
vecteur lidnt_function38(const gen & g);
// Find zero or extrema of equation for variable near guess in real mode
// For polynomial input, returns all zeros or extrema
// type=0 for zeros, =1 for extrema
// returns 0 if zero(s) were found, 1 if extrema found, 2 if sign reversal found
vecteur solve_zero_extremum(const gen & equation,const gen & variable,const gen & guess,int & type,GIAC_CONTEXT);
vecteur solve_zero_extremum(const gen & equation0,const gen & variable,const gen & guess,double xmin, double xmax,int & type,GIAC_CONTEXT);
// returns 0 for 0 solution, 1 for 1 solution, 2 for infinity solution
// -1 on error
int aspen_linsolve(const matrice & m,GIAC_CONTEXT);
// returns 0 for 0 solution, 1 for 1 solution, 2 for infinity solution
// -1 on error
int aspen_linsolve_2x2(const gen & a,const gen &b,const gen &c,
const gen &d,const gen & e,const gen & f,GIAC_CONTEXT);
// returns 0 for 0 solution, 1 for 1 solution, 2 for infinity solution
// -1 on error
int aspen_linsolve_3x3(const gen & a,const gen &b,const gen &c,const gen &d,
const gen & e,const gen &f,const gen & g,const gen &h,
const gen & i,const gen & j,const gen &k,const gen &l,GIAC_CONTEXT);
// minimization of f under constraints using cobyla algorithm
// returns an error or the vecteur of coordinates of variables
// and sets min_value to f at this point
gen fmin_cobyla(const gen & f,const vecteur & constraints,const vecteur & variables,const vecteur & guess,const gen & eps0,const gen & maxiter0,GIAC_CONTEXT);
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC
#endif // _GIAC_SOLVE_H
#if !defined(GIAC_HAS_STO_38) && !defined(ConnectivityKit)
/* cobyla : contrained optimization by linear approximation */
/*
* Copyright (c) 1992, Michael J. D. Powell (M.J.D.Powell@damtp.cam.ac.uk)
* Copyright (c) 2004, Jean-Sebastien Roy (js@jeannot.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This software is a C version of COBYLA2, a contrained optimization by linear
* approximation package developed by Michael J. D. Powell in Fortran.
*
* The original source code can be found at :
* http://plato.la.asu.edu/topics/problems/nlores.html
*/
/* $Jeannot: cobyla.h,v 1.10 2004/04/18 09:51:37 js Exp $ */
#ifndef _COBYLA_
#define _COBYLA_
/*
* Verbosity level
*/
typedef enum {
COBYLA_MSG_NONE = 0, /* No messages */
COBYLA_MSG_EXIT = 1, /* Exit reasons */
COBYLA_MSG_ITER = 2, /* Rho and Sigma changes */
COBYLA_MSG_INFO = 3, /* Informational messages */
} cobyla_message;
/*
* Possible return values for cobyla
*/
typedef enum
{
COBYLA_MINRC = -2, /* Constant to add to get the rc_string */
COBYLA_EINVAL = -2, /* N<0 or M<0 */
COBYLA_ENOMEM = -1, /* Memory allocation failed */
COBYLA_NORMAL = 0, /* Normal return from cobyla */
COBYLA_MAXFUN = 1, /* Maximum number of function evaluations reach */
COBYLA_ROUNDING = 2, /* Rounding errors are becoming damaging */
COBYLA_USERABORT = 3 /* User requested end of minimization */
} cobyla_rc;
/*
* Return code strings
* use cobyla_rc_string[rc - COBYLA_MINRC] to get the message associated with
* return code rc.
*/
extern const char *cobyla_rc_string[6];
/*
* A function as required by cobyla
* state is a void pointer provided to the function at each call
*
* n : the number of variables
* m : the number of constraints
* x : on input, then vector of variables (should not be modified)
* f : on output, the value of the function
* con : on output, the value of the constraints (vector of size m)
* state : on input, the value of the state variable as provided to cobyla
*
* COBYLA will try to make all the values of the constraints positive.
* So if you want to input a constraint j such as x[i] <= MAX, set:
* con[j] = MAX - x[i]
* The function must returns 0 if no error occurs or 1 to immediately end the
* minimization.
*
*/
typedef int cobyla_function(int n, int m, double *x, double *f, double *con,
void *state);
/*
* cobyla : minimize a function subject to constraints
*
* n : number of variables (>=0)
* m : number of constraints (>=0)
* x : on input, initial estimate ; on output, the solution
* rhobeg : a reasonable initial change to the variables
* rhoend : the required accuracy for the variables
* message : see the cobyla_message enum
* maxfun : on input, the maximum number of function evaluations
* on output, the number of function evaluations done
* calcfc : the function to minimize (see cobyla_function)
* state : used by function (see cobyla_function)
*
* The cobyla function returns a code defined in the cobyla_rc enum.
*
*/
extern int cobyla(int n, int m, double *x, double rhobeg, double rhoend,
int message, int *maxfun, cobyla_function *calcfc, void *state);
#endif /* _COBYLA_ */
#endif // GIAC_HAS_STO_38
|