6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
// -*- mode:C++ ; compile-command: "g++ -I.. -g -c modpoly.cc" -*-
/*
* Copyright (C) 2000,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GIAC_MODPOLY_H_
#define _GIAC_MODPOLY_H_
#include "first.h"
#include "global.h"
#include "fraction.h"
#ifdef HAVE_LIBNTL
#include <NTL/ZZXFactoring.h>
#include <NTL/ZZ.h>
#include <NTL/GF2X.h>
#include <NTL/pair_GF2X_long.h>
#include <NTL/GF2XFactoring.h>
#include <NTL/ZZ_pX.h>
#include <NTL/pair_ZZ_pX_long.h>
#include <NTL/ZZ_pXFactoring.h>
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif
#endif // HAVE_LIBNTL
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
template<class T> class tensor;
typedef tensor<gen> polynome;
typedef vecteur modpoly;
typedef vecteur dense_POLY1; // same internal rep but assumes non modular op
// set env->pn, returns true if size of field <=2^31
bool normalize_env(environment * env);
// modular or GF inverse
gen invenv(const gen & g,environment * env);
// ***********************
// Building and converting
// ***********************
// Conversion from univariate to multivariate polynomials
modpoly modularize(const polynome & p,const gen & n,environment * env);
modpoly modularize(const dense_POLY1 & p,const gen & n,environment * env);
polynome unmodularize(const modpoly & a);
bool is_one(const modpoly & p);
int is_cyclotomic(const modpoly & p,GIAC_CONTEXT);
int is_cyclotomic(const modpoly & p,double eps);
modpoly one(); // 1
modpoly xpower1(); // x
modpoly xpowerpn(environment * env); // x^modulo
vecteur x_to_xp(const vecteur & v, int p); // x -> x^p non modular
gen nrandom(environment * env); // random modular integer
modpoly random(int i,environment * env); // random univariate polynomial of degree i
void shiftmodpoly(modpoly & a,int n); // multiply by x^n
// high = high*x^n + low, size of low must be < n
void mergemodpoly(modpoly & high,const modpoly & low,int n);
modpoly trim(const modpoly & p,environment * env);
void trim_inplace(modpoly & p);
bool trim(modpoly & v); // true if v is empty after trimming
void rrdm(modpoly & p, int n); // right redimension poly to degree n
// ***************
// Arithmetic
// ***************
// !! Do not call Addmodpoly with modpoly slices if new_coord and th/other overlapp
void Addmodpoly(modpoly::const_iterator th_it,modpoly::const_iterator th_itend,modpoly::const_iterator other_it,modpoly::const_iterator other_itend,environment * env, modpoly & new_coord);
void addmodpoly(const modpoly & th, const modpoly & other, modpoly & new_coord);
void addmodpoly(const modpoly & th, const modpoly & other, environment * env,modpoly & new_coord);
modpoly operator_plus (const modpoly & th,const modpoly & other,environment * env);
modpoly operator + (const modpoly & th,const modpoly & other);
void Submodpoly(modpoly::const_iterator th_it,modpoly::const_iterator th_itend,modpoly::const_iterator other_it,modpoly::const_iterator other_itend,environment * env,modpoly & new_coord);
void submodpoly(const modpoly & th, const modpoly & other, environment * env,modpoly & new_coord);
void submodpoly(const modpoly & th, const modpoly & other, modpoly & new_coord);
modpoly operator_minus (const modpoly & th,const modpoly & other,environment * env);
modpoly operator - (const modpoly & th,const modpoly & other);
void negmodpoly(const modpoly & th, modpoly & new_coord);
modpoly operator - (const modpoly & th) ;
// Warning: mulmodpoly assumes that coeff are integers.
// Use operator_times unless you know what you do
void mulmodpoly(const modpoly & th, const gen & fact, modpoly & new_coord);
void mulmodpoly(const modpoly & th, const gen & fact, environment * env, modpoly & new_coord);
void mulmodpoly_naive(modpoly::const_iterator ita,modpoly::const_iterator ita_end,modpoly::const_iterator itb,modpoly::const_iterator itb_end,environment * env,modpoly & new_coord);
void mulmodpoly_kara_naive(const modpoly & a, const modpoly & b,environment * env,modpoly & new_coord,int seuil_kara);
// new_coord += a*b in place
void add_mulmodpoly(const modpoly::const_iterator & ita0,const modpoly::const_iterator & ita_end,const modpoly::const_iterator & itb0,const modpoly::const_iterator & itb_end,environment * env,modpoly & new_coord);
// modpoly operator * (const modpoly & th, const gen & fact);
modpoly operator_times (const modpoly & th, const gen & fact,environment * env);
// commented otherwise int * gen might be interpreted as
// make a modpoly of size the int and multiply
modpoly operator_times (const gen & fact,const modpoly & th,environment * env);
modpoly operator * (const gen & fact,const modpoly & th);
void mulmodpoly(const modpoly & a, const modpoly & b, environment * env,modpoly & new_coord);
modpoly operator * (const modpoly & th, const modpoly & other) ;
modpoly modpoly operator_times (const modpoly & th, const modpoly & other,environment * env) ; (const modpoly & th, const modpoly & other,environment * env) modpoly operator_times (const modpoly & th, const modpoly & other,environment * env) ;
void operator_times (const modpoly & a, const modpoly & b,environment * env,modpoly & new_coord);
// res=(*it) * ... (*(it_end-1))
void mulmodpoly(std::vector<modpoly>::const_iterator it,std::vector<modpoly>::const_iterator it_end,environment * env,modpoly & new_coord);
void mulmodpoly(std::vector<modpoly>::const_iterator * it,int debut,int fin,environment * env,modpoly & pi);
void divmodpoly(const modpoly & th, const gen & fact, modpoly & new_coord);
void divmodpoly(const modpoly & th, const gen & fact, environment * env,modpoly & new_coord);
modpoly operator / (const modpoly & th,const modpoly & other) ;
bool DivRem(const modpoly & th, const modpoly & other, environment * env,modpoly & quo, modpoly & rem,bool allowrational=true);
bool DenseDivRem(const modpoly & th, const modpoly & other,modpoly & quo, modpoly & rem,bool fastfalsetest=false);
// Pseudo division a*th = other*quo + rem
void PseudoDivRem(const dense_POLY1 & th, const dense_POLY1 & other, dense_POLY1 & quo, dense_POLY1 & rem, gen & a);
modpoly operator / (const modpoly & th,const gen & fact ) ;
modpoly modpoly operator_div (const modpoly & th,const modpoly & other,environment * env) ; (const modpoly & th,const modpoly & other,environment * env) modpoly operator_div (const modpoly & th,const modpoly & other,environment * env) ;
modpoly operator % (const modpoly & th,const modpoly & other) ;
modpoly modpoly operator_mod (const modpoly & th,const modpoly & other,environment * env) ; (const modpoly & th,const modpoly & other,environment * env) modpoly operator_mod (const modpoly & th,const modpoly & other,environment * env) ;
// division by ascending power (used for power series)
dense_POLY1 AscPowDivRem(const dense_POLY1 & num, const dense_POLY1 & den,int order);
modpoly powmod(const modpoly & p,const gen & n,const modpoly & pmod,environment * env);
gen cstcoeff(const modpoly & q);
// p=(X-x)q+p(x), first horner returns p(x), second one compute q as well
gen horner(const gen & g,const gen & x);
gen horner(const gen & g,const gen & x);
gen hornermod(const vecteur & v,const gen & alpha,const gen & modulo);
int hornermod(const vecteur & v,int alpha,int modulo);
extern const unary_function_ptr * const at_horner ;
gen horner(const modpoly & p,const gen & x,environment * env,bool simp=true);
gen horner(const modpoly & p,const gen & x);
gen horner(const modpoly & p,const gen & x,environment * env,modpoly & q);
gen horner(const modpoly & p,const fraction & f,bool simp);
gen _horner(const gen & args,GIAC_CONTEXT);
std::complex<double> horner_newton(const vecteur & p,const std::complex<double> &x,GIAC_CONTEXT); // x-p(x)/p'(x)
void hornerfrac(const modpoly & p,const gen &num, const gen &den,gen & res,gen & d); // res/d=p(num/den)
// find bounds for p(interval[l,r]) with p, l and r real and exact
vecteur horner_interval(const modpoly & p,const gen & l,const gen & r);
gen symb_horner(const modpoly & p,const gen & x,int d);
gen symb_horner(const modpoly & p,const gen & x);
// shift polynomial
modpoly taylor(const modpoly & p,const gen & x,environment * env=0);
// split P=Pp-Pn in two parts, Pp positive coeffs and Pn negative coeffs
void splitP(const vecteur &P,vecteur &Pp,vecteur &Pn);
gen norm(const dense_POLY1 & q,GIAC_CONTEXT); // max of |coeff|
modpoly derivative(const modpoly & p);
modpoly derivative(const modpoly & p,environment * env);
// integration of p with coeff in *ascending* order, does not add 0
// if you use it with usual modpoly, you must reverse(p.begin(),p.end())
// before and after usage, set shift_coeff to 1, and push_back a zero
modpoly integrate(const modpoly & p,const gen & shift_coeff);
// ***************
// GCD and related. Works currently only if modular aritmetic
// ***************
modpoly simplify(modpoly & a, modpoly & b,environment * env);
gen ppz(dense_POLY1 & q);
gen lgcd(const dense_POLY1 & p); // gcd of coeffs
gen lgcd(const dense_POLY1 & p,const gen & g);
// modular gcd
void modpoly2smallmodpoly(const modpoly & p,std::vector<int> & v,int m);
bool gcdmodpoly(const modpoly &p,const modpoly & q,environment * env,modpoly &a);
// 1-d modular for small modulus<sqrt(RAND_MAX)
bool gcdsmallmodpoly(const polynome &p,const polynome & q,int m,polynome & d,polynome & dp,polynome & dq,bool compute_cof);
void smallmodpoly2modpoly(const std::vector<int> & v,modpoly & p,int m);
void gcdsmallmodpoly(const std::vector<int> &p,const std::vector<int> & q,int m,std::vector<int> & d);
void gcdsmallmodpoly(const std::vector<int> &p,const std::vector<int> & q,int m,std::vector<int> & d,std::vector<int> * pcof,std::vector<int> * qcof);
void gcdsmallmodpoly(const std::vector<int> &p,const std::vector<int> & q,int m,std::vector<int> & d);
void gcdsmallmodpoly(const modpoly &p,const modpoly & q,int m,modpoly & d);
void DivRem(const std::vector<int> & th, const std::vector<int> & other,int m,std::vector<int> & quo, std::vector<int> & rem);
modpoly gcd(const modpoly & a,const modpoly &b,environment * env);
// n-var modular gcd
bool gcd_modular(const polynome &p_orig, const polynome & q_orig, polynome & pgcd,polynome & pcofactor,polynome & qcofactor,bool compute_cofactors);
bool convert(const polynome &p_orig, const polynome & q_orig,index_t & d,std::vector<hashgcd_U> & vars,std::vector< T_unsigned<gen,hashgcd_U> > & p,std::vector< T_unsigned<gen,hashgcd_U> > & q);
bool convert(const polynome &p_orig, const polynome & q_orig,index_t & d,std::vector<hashgcd_U> & vars,std::vector< T_unsigned<int,hashgcd_U> > & p,std::vector< T_unsigned<int,hashgcd_U> > & q,int modulo);
bool modgcd(const polynome &p_orig, const polynome & q_orig, const gen & modulo, polynome & d,polynome & pcofactor,polynome & qcofactor,bool compute_cofactors);
bool mod_gcd_c(const polynome &p_orig, const polynome & q_orig, const gen & modulo, polynome & d,polynome & pcofactor,polynome & qcofactor,bool compute_cofactors);
bool mod_gcd(const polynome &p_orig, const polynome & q_orig, const gen & modulo, polynome & pgcd,polynome & pcofactor,polynome & qcofactor,bool compute_cofactors);
modpoly lcm(const modpoly & a,const modpoly &b,environment * env);
bool gcd_modular_algo1(polynome &p,polynome &q,polynome &d,bool compute_cof);
// p1*u+p2*v=d
void egcd(const modpoly &p1, const modpoly & p2, environment * env,modpoly & u,modpoly & v,modpoly & d);
bool egcd_pade(const modpoly & n,const modpoly & x,int l,modpoly & a,modpoly &b,environment * env,bool psron=true);
// alg extension norme for p_y, alg extension defined by pmini
bool algnorme(const polynome & p_y,const polynome & pmini,polynome & n);
void subresultant(const modpoly & P,const modpoly & Q,gen & res);
int sizeinbase2(const gen & g);
int sizeinbase2(const vecteur & v);
// multinomial power by Miller pure recurrence
bool miller_pow(const modpoly & p_,unsigned m,modpoly & res);
// Given [v_0 ... v_(2n-1)] (begin of the recurrence sequence)
// return [b_n...b_0] such that b_n*v_{n+k}+...+b_0*v_k=0
// Example [1,-1,3,3] -> [1,-3,-6]
vecteur reverse_rsolve(const vecteur & v,bool psron=true);
// given a and c, find u such that
// a[0]*...a[n-1]*u[n]+a[0]*...*a[n-2]*a[n]*u[n-1]+...+a[1]*...*a[n-1]*u[0]=1
bool egcd(const std::vector<modpoly> & a, environment * env,std::vector<modpoly> & u);
// same as above
std::vector<modpoly> egcd(const std::vector<modpoly> & a, environment * env);
// assuming pmod and qmod are prime together, find r such that
// r = p mod pmod and r = q mod qmod
// hence r = p + A*pmod = q + B*qmod
// or A*pmod -B*qmod = q - p
// assuming u*pmod+v*pmod=d we get
// A=u*(q-p)/d
dense_POLY1 ichinrem(const dense_POLY1 &p,const dense_POLY1 & q,const gen & pmod,const gen & qmod);
modpoly chinrem(const modpoly & p,const modpoly & q, const modpoly & pmod, const modpoly & qmod,environment * env);
int ichinrem_inplace(dense_POLY1 &p,const std::vector<int> & q,const gen & pmod,int qmodval); // 0 error, 1 p changed, 2 p unchanged
void divided_differences(const vecteur & x,const vecteur & y,vecteur & res,environment * env);
// in-place modification and exact division if divexact==true
void divided_differences(const vecteur & x,vecteur & res,environment * env,bool divexact);
void interpolate(const vecteur & x,const vecteur & y,modpoly & res,environment * env);
void interpolate_inplace(const vecteur & x,modpoly & res,environment * env);
void mulpoly_interpolate(const polynome & p,const polynome & q,polynome & res,environment * env);
bool dotvecteur_interp(const vecteur & a,const vecteur &b,gen & res);
bool mmult_interp(const matrice & a,const matrice &b,matrice & res);
bool poly_pcar_interp(const matrice & a,vecteur & p,bool compute_pmin,GIAC_CONTEXT);
void polymat2matpoly(const vecteur & R,vecteur & res);
// Fast Fourier Transform, f the poly sum_{j<n} f_j x^j,
// and w=[1,omega,...,omega^[m-1]] with m a multiple of n
// return [f(1),f(omega),...,f(omega^[n-1])
// WARNING f is given in ascending power
void fft(const modpoly & f,const modpoly & w ,modpoly & res,environment * env);
// void fft(std::vector< std::complex<double> >& f,const std::vector< std::complex<double> > & w ,std::vector<std::complex< double> > & res);
void fft(std::complex<double> * f,int n,const std::complex<double> * w,int m,std::complex< double> * t);
void fft(const std::vector<int> & f,const std::vector<int> & w ,std::vector<int> & res,int modulo);
bool fft2mult(const std::vector<int> & a,const std::vector<int> & b,std::vector<int> & res,int modulo,bool reverseatend);
// Convolution of p and q, omega a n-th root of unity, n=2^k
// WARNING p0 and q0 are given in ascending power
void fftconv(const modpoly & p,const modpoly & q,unsigned long k,unsigned long n,const gen & omega,modpoly & pq,environment * env);
// Convolution of p and q, omega a n-th root of unity, n=2^k
// p and q are given in descending power order
void fftconv(const modpoly & p0,const modpoly & q0,unsigned long k,const gen & omega,modpoly & pq,environment * env);
bool fftmult(const modpoly & p,const modpoly & q,modpoly & pq,int modulo=0);
modpoly fftmult(const modpoly & p,const modpoly & q);
// input A with positive int, output fft in A
// w a 2^n-th root of unity mod p
void fft2( int *A, int n, int w, int p );
// float fft, theta should be +/-2*M_PI/n
void fft2( std::complex<double> * A, int n, double theta );
#ifdef HAVE_LIBNTL
#ifdef HAVE_LIBPTHREAD
extern pthread_mutex_t ntl_mutex;
#endif
typedef gen inttype;
bool polynome2tab(const polynome & p,int deg,inttype * tab);
polynome tab2polynome(const inttype * tab,int deg);
void ininttype2ZZ(const inttype & temp,const inttype & step,NTL::ZZ & z,const NTL::ZZ & zzstep);
NTL::ZZ inttype2ZZ(const inttype & i);
void inZZ2inttype(const NTL::ZZ & zztemp,const NTL::ZZ & zzstep,inttype & temp,const inttype & step);
inttype ZZ2inttype(const NTL::ZZ & z);
NTL::ZZX tab2ZZX(const inttype * tab,int degree);
void ZZX2tab(const NTL::ZZX & f,int & degree,inttype * & tab);
// Z/nZ[X] conversions
NTL::GF2X modpoly2GF2X(const modpoly & p);
modpoly GF2X2modpoly(const NTL::GF2X & f);
NTL::ZZ_pX modpoly2ZZ_pX(const modpoly & p);
modpoly ZZ_pX2modpoly(const NTL::ZZ_pX & f);
#endif
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // NO_NAMESPACE_GIAC
#endif // _GIAC_MODPOLY_H
|