6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
|
// -*- mode:C++ ; compile-command: "g++ -I.. -g -c -DHAVE_CONFIG_H -DIN_GIAC gen.cc" -*-
/*
* Copyright (C) 2001,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _GIAC_GEN_H
#define _GIAC_GEN_H
/* Warning: the size of a gen depend on the architecture and of compile-time flags
Define -DSMARTPTR64 on 64 bit CPU if the pointers allocated by new are 48 bits
this will make sizeof(gen)==8 instead of 16
Currently the address of pointers is obtained by using the reserved and val fields
(48 bits) and adding 00 for the most significant bits
On systems that use pointers above 0x00ffffffff it might be better to use a table
of most significants 32 bits addresses (refered by the reserved field)
and use the val field for offset.
Define -DDOUBLEVAL if you did not define SMARTPTR64 and want full double precision
(53 bit mantissa). Otherwise, the 8 less significant bits will be used for the type
field of a gen, i.e. 0x01 for a double, hence 45 bit mantissa will be used for doubles
Using full double precision increases sizeof(gen) to 12 on a 32 bits CPU
(and 16 on a 64 bits CPU)
*/
// FIXME: macros defined in config.h are not welcome in a public header!
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "first.h"
// #include <gmp.h>
#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif
#ifdef HAVE_GMPXX_H
#include <gmpxx.h>
#endif
#ifdef HAVE_LIBMPFR
#include <mpfr.h>
// #include <mpf2mpfr.h>
#endif
#ifdef HAVE_LIBMPFI
#include <mpfi.h>
#endif
#include <iostream>
#include <string>
#include "vector.h"
#include <map>
#include "dispatch.h"
#include "vecteur.h"
#include "fraction.h"
#include "poly.h"
#include "giacintl.h"
#include <complex>
#include <stdlib.h>
#ifdef STATIC_BUILTIN_LEXER_FUNCTIONS
#include "static.h"
#endif
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
#ifdef USE_GMP_REPLACEMENTS
#undef HAVE_GMPXX_H
#undef HAVE_LIBMPFR
#endif
void my_mpz_gcd(mpz_t &z,const mpz_t & A,const mpz_t & B);
class gen ;
// errors
void settypeerr(GIAC_CONTEXT0);
void setsizeerr(GIAC_CONTEXT0);
void setdimerr(GIAC_CONTEXT0);
void settypeerr(const std::string & s);
void setsizeerr(const std::string & s);
void setdimerr(const std::string & s);
void divisionby0err(const gen &,GIAC_CONTEXT0);
void cksignerr(const gen &,GIAC_CONTEXT0);
void invalidserieserr(const std::string &,GIAC_CONTEXT0);
void toofewargs(const std::string & s,GIAC_CONTEXT0);
void toomanyargs(const std::string & s,GIAC_CONTEXT0);
void maxordererr(GIAC_CONTEXT0);
void setstabilityerr(GIAC_CONTEXT0);
gen undeferr(const std::string & s);
gen gentypeerr(GIAC_CONTEXT0);
void gentypeerr(gen & g,GIAC_CONTEXT);
gen gensizeerr(GIAC_CONTEXT0);
void gensizeerr(gen & g,GIAC_CONTEXT);
gen gendimerr(GIAC_CONTEXT0);
void gendimerr(gen & g,GIAC_CONTEXT);
gen gentypeerr(const std::string & s);
void gentypeerr(const char * ch,gen & g);
gen gensizeerr(const std::string & s);
void gensizeerr(const char * ch,gen & g);
gen gendimerr(const std::string & s);
void gensizeerr(const char * ch,gen & g);
gen gendivisionby0err(const gen &,GIAC_CONTEXT0);
gen gencksignerr(const gen &,GIAC_CONTEXT0);
gen geninvalidserieserr(const std::string &,GIAC_CONTEXT0);
gen gentoofewargs(const std::string & s,GIAC_CONTEXT0);
gen gentoomanyargs(const std::string & s,GIAC_CONTEXT0);
gen genmaxordererr(GIAC_CONTEXT0);
gen genstabilityerr(GIAC_CONTEXT0);
// short integer arithmetic
int absint(int a);
int giacmin(int a,int b);
int giacmax(int a,int b);
int invmod(int n,int modulo);
unsigned invmod(unsigned a,int b);
int invmod(longlong a,int b);
#ifdef INT128
int invmod(int128_t a,int b);
inline int smod(int128_t r,int m){
int R=r%m;
return smod(R,m);
}
#endif
int gcd(int a,int b);
inline int smod_adjust(int r,int m){ // precondition -m<r<m
r += (unsigned(r)>>31)*m; // make positive
return r-(unsigned((m>>1)-r)>>31)*m;
}
int smod(int a,int b); // where b is assumed to be positive
int smod(longlong a,int b);
int simplify(int & a,int & b);
struct ref_mpz_t {
volatile ref_count_t ref_count;
mpz_t z;
ref_mpz_t():ref_count(1) {mpz_init(z);}
ref_mpz_t(size_t nbits):ref_count(1) {mpz_init2(z,int(nbits));}
ref_mpz_t(const mpz_t & Z): ref_count(1) { mpz_init_set(z,Z); }
~ref_mpz_t() { mpz_clear(z); }
};
class identificateur;
struct ref_identificateur; // in identificateur.h
struct symbolic;
struct ref_symbolic; // in symbolic.h
class unary_function_eval;
struct unary_function_ptr;
typedef const unary_function_ptr * const_unary_function_ptr_ptr;
typedef const unary_function_eval * const_unary_function_eval_ptr;
struct ref_unary_function_ptr; // in unary.h
struct eqwdata;
struct ref_eqwdata ; // defined below after gen
struct ref_complex;
struct ref_algext;
struct ref_modulo;
// Graphic object
struct grob {
void (* grob_draw)(void);
int (* grob_handle) (int);
void * grob_data;
};
struct ref_grob {
volatile ref_count_t ref_count;
grob g;
ref_grob(const grob & G):ref_count(1),g(G) {}
};
class gen_user;
struct ref_gen_user ; // user defined type
struct ref_string {
volatile ref_count_t ref_count;
std::string s;
ref_string(const std::string & S):ref_count(1),s(S) {}
};
template <class T> class tensor;
typedef tensor<gen> polynome;
typedef std::vector< facteur< polynome > > factorization;
template<class T> class Tref_tensor; // in poly.h
typedef Tref_tensor<gen> ref_polynome;
typedef Tfraction<gen> fraction;
template<class T> class Tref_fraction;
typedef Tref_fraction<gen> ref_fraction;
struct ref_vecteur;
void delete_ref_vecteur(ref_vecteur * ptr);
ref_vecteur * new_ref_vecteur(const vecteur & v);
ref_symbolic * new_ref_symbolic(const symbolic & s);
template<class T> class Tref_fraction; // in fraction.h
struct ref_void_pointer {
volatile ref_count_t ref_count;
void * p;
ref_void_pointer(void * P):ref_count(1),p(P) {}
};
struct monome;
// sparse polynomials: uncomment one of the 2 next lines
#ifdef DEBUG_SUPPORT
typedef dbgprint_vector<monome> sparse_poly1; // debugging support
#else
typedef std::vector<monome> sparse_poly1; // no debug. support
#endif
struct ref_sparse_poly1;
// arbitrary precision floats hierarchy (value or interval)
std::string printmpf_t(const mpf_t & inf);
class real_object {
public:
#ifdef HAVE_LIBMPFR
mpfr_t inf;
#else
mpf_t inf;
#endif
real_object(double d);
#ifdef HAVE_LIBMPFR
real_object(const mpfr_t & d);
real_object(const mpf_t & d);
#else
real_object(const mpf_t & d);
#endif
real_object(const gen & g);
real_object(const gen & g,unsigned int precision);
real_object() ;
virtual std::string print(GIAC_CONTEXT) const;
const char * dbgprint() const {
static std::string s;
s=this->print(0);
#if 0 // ndef NSPIRE
CERR << s << std::endl;
#endif
return s.c_str();
}
virtual ~real_object() {
#ifdef HAVE_LIBMPFR
mpfr_clear(inf);
#else
mpf_clear(inf);
#endif
}
virtual real_object & operator = (const real_object & g);
real_object (const real_object & g) ;
virtual gen addition (const gen & g,GIAC_CONTEXT) const;
gen operator + (const gen & g) const;
virtual gen operator + (const real_object & g) const;
virtual gen multiply (const gen & g,GIAC_CONTEXT) const;
gen operator * (const gen & g) const;
virtual gen operator * (const real_object & g) const;
virtual gen divide (const gen & g,GIAC_CONTEXT) const;
gen operator / (const gen & g) const;
virtual gen substract (const gen & g,GIAC_CONTEXT) const;
virtual gen operator / (const real_object & g) const;
gen operator - (const gen & g) const;
virtual gen operator - (const real_object & g) const;
virtual gen operator -() const;
virtual gen inv() const;
virtual gen sqrt() const;
virtual gen abs() const;
virtual gen exp() const;
virtual gen log() const;
virtual gen sin() const;
virtual gen cos() const;
virtual gen tan() const;
virtual gen sinh() const;
virtual gen cosh() const;
virtual gen tanh() const;
virtual gen asin() const;
virtual gen acos() const;
virtual gen atan() const;
virtual gen asinh() const;
virtual gen acosh() const;
virtual gen atanh() const;
virtual bool is_zero() const;
virtual bool maybe_zero() const;
virtual bool is_inf() const;
virtual bool is_nan() const;
virtual int is_positive() const;
virtual double evalf_double() const;
};
struct ref_real_object {
volatile ref_count_t ref_count;
real_object r;
ref_real_object():ref_count(1) {}
ref_real_object(const real_object & R):ref_count(1),r(R) {}
};
gen real2int(const gen & g,GIAC_CONTEXT);
gen real2double(const gen & g);
class real_interval : public real_object {
public:
#ifdef HAVE_LIBMPFI
mpfi_t infsup;
#else
#ifdef HAVE_LIBMPFR
mpfr_t sup;
#else
mpf_t sup;
#endif
#endif
real_interval(){
#ifdef HAVE_LIBMPFI
mpfi_init_set_fr(infsup,inf);
#else
#ifdef HAVE_LIBMPFR
mpfr_init_set(sup,inf,GMP_RNDN);
#else
mpf_init_set(sup,inf);
#endif
#endif
}
#ifdef HAVE_LIBMPFI
real_interval(const mpfi_t & interv);
#endif
real_interval(const real_object & r):real_object(r) {
#ifdef HAVE_LIBMPFI
mpfi_init2(infsup,mpfr_get_prec(r.inf));
mpfi_set_fr(infsup,r.inf);
#else
#ifdef HAVE_LIBMPFR
mpfr_init_set(sup,r.inf,GMP_RNDN);
#else
mpf_init_set(sup,r.inf);
#endif
#endif
}
real_interval(const real_interval & r):real_object(r) {
#ifdef HAVE_LIBMPFI
mpfi_init2(infsup,mpfi_get_prec(r.infsup));
mpfi_set(infsup,r.infsup);
#else
#ifdef HAVE_LIBMPFR
mpfr_init_set(sup,r.sup,GMP_RNDN);
#else
mpf_init_set(sup,r.sup);
#endif
#endif
}
virtual ~real_interval() {
#ifdef HAVE_LIBMPFI
mpfi_clear(infsup);
#else
#ifdef HAVE_LIBMPFR
mpfr_clear(sup);
#else
mpf_clear(sup);
#endif
#endif
}
virtual real_object & operator = (const real_interval & g) ;
virtual real_object & operator = (const real_object & g) ;
virtual gen addition (const gen & g,GIAC_CONTEXT) const;
virtual gen operator + (const real_object & g) const;
virtual real_interval operator + (const real_interval & g) const;
virtual gen multiply (const gen & g,GIAC_CONTEXT) const;
virtual gen operator * (const real_object & g) const;
virtual real_interval operator * (const real_interval & g) const;
virtual gen divide (const gen & g,GIAC_CONTEXT) const;
virtual gen substract (const gen & g,GIAC_CONTEXT) const;
virtual gen operator - (const real_object & g) const;
virtual real_interval operator - (const real_interval & g) const ;
virtual gen operator -() const;
virtual bool is_zero () const ;
virtual bool maybe_zero () const ;
virtual int is_positive() const ;
virtual bool is_inf() const;
virtual bool is_nan() const;
virtual gen inv() const;
virtual gen sqrt() const;
virtual gen abs() const;
virtual gen exp() const;
virtual gen log() const;
virtual gen sin() const;
virtual gen cos() const;
virtual gen tan() const;
virtual gen sinh() const;
virtual gen cosh() const;
virtual gen tanh() const;
virtual gen asin() const;
virtual gen acos() const;
virtual gen atan() const;
virtual gen asinh() const;
virtual gen acosh() const;
virtual gen atanh() const;
};
struct ref_real_interval {
volatile ref_count_t ref_count;
real_interval r; // assumes that storage of real_object inside real_interval is first
ref_real_interval():ref_count(1) {}
ref_real_interval(const real_interval & R):ref_count(1),r(R) {}
};
std::string print_binary(const real_object & r);
gen read_binary(const std::string & s,unsigned int precision);
// Convert g to a real or complex object of precision nbits
gen accurate_evalf(const gen & g,int nbits);
vecteur accurate_evalf(const vecteur & v,int nbits);
std::string print_DOUBLE_(double d,GIAC_CONTEXT);
#if 1 // def NSPIRE
class comparegen {
public:
bool operator () (const gen & a,const gen & b) const;
};
typedef std::map<gen,gen,comparegen> gen_map;
#else
typedef std::map<gen,gen,const std::pointer_to_binary_function < const gen &, const gen &, bool> > gen_map;
#endif
struct ref_gen_map;
class my_mpz;
#ifdef NO_UNARY_FUNCTION_COMPOSE
class unary_function_eval;
#else
class unary_function_abstract;
#endif
struct alias_unary_function_eval;
struct unary_function_ptr {
#ifdef NO_UNARY_FUNCTION_COMPOSE
// const unary_function_eval * _ptr;
size_t _ptr;
// int quoted; // will be used to avoid evaluation of args by eval
// constructors
// lexer_register is true to add dynamically the function name
// to the list of functions names recognized by the lexer
unary_function_ptr():_ptr(0) {} ;
unary_function_ptr(const unary_function_eval * myptr):_ptr((size_t)myptr) {} ;
// unary_function_ptr(const unary_function_eval * myptr,int parser_token);
unary_function_ptr(const unary_function_eval * myptr,int myquoted,int parser_token);
// unary_function_ptr(const alias_unary_function_eval * myptr,int parser_token);
unary_function_ptr(const alias_unary_function_eval * myptr,int myquoted,int parser_token);
#else // NO_UNARY_FUNCTION_COMPOSE
const unary_function_abstract * _ptr;
// long * ref_count;
// int quoted; // will be used to avoid evaluation of args by eval
// constructors
// lexer_register is true to add dynamically the function name
// to the list of functions names recognized by the lexer
// unary_function_ptr(const unary_function_abstract & myptr);
unary_function_ptr():_ptr(0) {} ;
unary_function_ptr(const unary_function_abstract * myptr):_ptr(myptr) {} ;
// unary_function_ptr(const unary_function_abstract * myptr,int parser_token) ;
// unary_function_ptr(const unary_function_abstract & myptr,int myquoted,int parser_token=0);
unary_function_ptr(const unary_function_abstract * myptr,int myquoted,int parser_token);
// unary_function_ptr(const unary_function_ptr & myptr);
// unary_function_ptr(const alias_unary_function_eval * myptr,int parser_token);
unary_function_ptr(const alias_unary_function_eval * myptr,int myquoted,int parser_token);
#endif // NO_UNARY_FUNCTION_COMPOSE
// ~unary_function_ptr();
// unary_function_ptr & operator = (const unary_function_ptr & acopier);
gen operator () (const gen & arg,GIAC_CONTEXT) const;
#ifdef NO_UNARY_FUNCTION_COMPOSE
inline unary_function_eval * ptr() const {
return (unary_function_eval *) (((size_t) _ptr) & ~(uintptr_t)3);
#ifdef x86_64
//return (unary_function_eval *) (((ulonglong ) _ptr) & 0xfffffffffffffffc);
#else
//return (unary_function_eval *) (((size_t) _ptr) & 0xfffffffc);
#endif
}
#else // NO_UNARY_FUNCTION_COMPOSE
inline unary_function_abstract * ptr () const
{
return (unary_function_abstract *) (((ulonglong ) _ptr) & ~(uintptr_t)3);
#ifdef x86_64
return (unary_function_abstract *) (((ulonglong ) _ptr) & 0xfffffffffffffffc);
#else
return (unary_function_abstract *) (((size_t) _ptr) & 0xfffffffc);
#endif
}
#endif // NO_UNARY_FUNCTION_COMPOSE
bool quoted() const ;
inline bool operator ==(const unary_function_ptr & u) const {
// if (&u==this) return true;
return ((ulonglong)(_ptr) & ~(uintptr_t)3 ) == ((ulonglong)( u._ptr) & ~(uintptr_t)3 );
#ifdef x86_64
//return ((ulonglong)(_ptr) & 0xfffffffffffffffc) == ((ulonglong)( u._ptr) & 0xfffffffffffffffc );
#else
//return ((size_t)(_ptr) & 0xfffffffc) == ((size_t)(u._ptr) & 0xfffffffc);
#endif
}
inline bool operator !=(const unary_function_ptr & u) const { return !(*this==u); }
inline bool operator ==(const unary_function_ptr * u) const {
// if (&u==this) return true;
return u && ( ((ulonglong)(_ptr) & ~(uintptr_t)3 ) == ((ulonglong)(u->_ptr) & ~(uintptr_t)3) );
#ifdef x86_64
//return u && ( ((ulonglong)(_ptr) & 0xfffffffffffffffc) == ((ulonglong)(u->_ptr) & 0xfffffffffffffffc) );
#else
//return u && ( ((size_t)(_ptr) & 0xfffffffc) == ((size_t)(u->_ptr) & 0xfffffffc ) );
#endif
}
inline bool operator !=(const unary_function_ptr * u) const { return !(*this==u); }
const char * dbgprint() const;
};
void delete_ptr(signed char subtype,short int type_save,ref_mpz_t * ptr_save);
// FIXME: for little-endian check if type/unused/subtype order is correct!
class gen {
public:
#ifdef GIAC_TYPE_ON_8BITS
unsigned char type; // see dispatch.h
#else
unsigned char type:5; // 32 types is enough, keep 3 bits more for double
unsigned char type_unused:3;
#endif
signed char subtype;
unsigned short reserved; // used if SMARTPTR is defined on 64 bit CPU (16 bits for pointer val)
union {
// immediate types
int val; // immediate int (type _INT_)
#ifdef DOUBLEVAL
double _DOUBLE_val; // immediate float (type _DOUBLE_)
giac_float _FLOAT_val;
#endif
#ifndef SMARTPTR64
// pointer types
ref_mpz_t * __ZINTptr; // long int (type _ZINT)
ref_real_object * __REALptr; // extended double (type _REAL)
ref_complex * __CPLXptr ; // complex as an gen[2] array (type _CPLX)
ref_identificateur * __IDNTptr; // global name identifier (type _IDNT)
ref_symbolic * __SYMBptr; // for symbolic objects (type _SYMB)
ref_modulo * __MODptr;
ref_algext * __EXTptr; // 2 gens for alg. extension (type ext)
// alg ext: 1st gen is a std::vector or a fraction, 2nd gen is
// a/ a std::vector, the minimal monic polynomial (the roots are permutable)
// b/ a real_complex_rootof given by it's min poly and
// c/ another type meaning that the root is expressed in terms
// of another rootof, in this case ext_reduce should be called
// For 2nd order extension, X^2=d is used if d!=1 mod 4
// X is the positive solution
// if d=1 mod 4 the equation is X^2-X=(d-1)/4
Tref_fraction<gen> * __FRACptr; // fraction (type _FRAC)
Tref_tensor<gen> * __POLYptr ; // multidim. sparse polynomials (type poly)
// _VECTosite types (std::vector<>)
ref_vecteur * __VECTptr ; // vecteur: std::vectors & dense_POLY1 (type _VECT)
ref_sparse_poly1 * __SPOL1ptr ; // std::vector<monome>: sparse 1-d poly (type _SPOL1)
ref_string * __STRNGptr;
size_t _FUNC_;
// ref_unary_function_ptr * __FUNCptr;
ref_gen_user * __USERptr;
ref_gen_map * __MAPptr;
ref_eqwdata * __EQWptr;
ref_grob * __GROBptr;
ref_void_pointer * __POINTERptr;
#endif
};
inline volatile ref_count_t & ref_count() const {
#ifdef SMARTPTR64
return ((ref_mpz_t *) ((* (ulonglong *) (this))>>16))->ref_count;
#else
return __ZINTptr->ref_count;
#endif
}
gen(): type(_INT_),subtype(0),val(0) {
#ifdef COMPILE_FOR_STABILITY
control_c();
#endif
};
#ifdef SMARTPTR64
gen(void *ptr,short int subt) {
#ifdef COMPILE_FOR_STABILITY
control_c();
#endif
ulonglong __POINTERptr = (ulonglong ) new ref_void_pointer(ptr);
#ifndef NO_STDEXCEPT
if (__POINTERptr & 0xffff000000000000)
setsizeerr(gettext("Pointer out of range"));
#endif
* ((ulonglong *) this) = __POINTERptr << 16;
subtype=(signed char)subt;
type=_POINTER_;
};
#else
gen(void *ptr,short int subt): type(_POINTER_),subtype(char(subt)) {
#ifdef COMPILE_FOR_STABILITY
control_c();
#endif
__POINTERptr=new ref_void_pointer(ptr);
};
#endif
gen(int i): type(_INT_),subtype(0),val(i) {
#ifdef COMPILE_FOR_STABILITY
control_c();
#endif
};
gen(size_t i): type(_INT_),subtype(0),val((int)i) {
#ifdef COMPILE_FOR_STABILITY
control_c();
#endif
};
gen(long i);
gen(longlong i);
gen(longlong i,int nbits);
#ifdef INT128
gen(int128_t i);
#endif
gen(const mpz_t & m);
// WARNING coerce *mptr to an int if possible, in this case delete mptr
// Pls do not use this constructor unless you know exactly what you do!!
gen(ref_mpz_t * mptr);
#ifdef DOUBLEVAL
gen(double d): type(_DOUBLE_),_DOUBLE_val(d) {};
#else
// may not work on ia64 with -O2
gen(double d);
#endif
gen(const giac_float & f);
#ifdef BCD
gen(accurate_bcd_float * b);
#endif
// inline
double DOUBLE_val() const ;
giac_float FLOAT_val() const ;
gen(int a,int b);
gen(double a,double b);
gen(const gen & a,const gen & b);
gen(const std::complex<double> & c);
gen(const gen & e);
gen (const identificateur & s);
gen (ref_identificateur * sptr);
gen (const vecteur & v,short int s=0);
gen (ref_vecteur * vptr,short int s=0);
// vptr must be a pointer allocated by new, do not delete it explicitly
gen (const symbolic & s);
gen (ref_symbolic * sptr);
gen (const gen_user & g);
gen (ref_gen_user * sptr);
gen (const real_object & g);
gen (const real_interval & g);
// Pls do not use this constructor unless you know exactly what you do
gen (Tref_tensor<gen> * pptr);
gen (const polynome & p);
gen (const fraction & p);
gen (const std::string & s,GIAC_CONTEXT);
gen (const wchar_t * s,GIAC_CONTEXT);
gen (const char * s,GIAC_CONTEXT){ type=0; *this=gen(std::string(s),contextptr); };
gen (const sparse_poly1 & p);
gen (const unary_function_ptr & f,int nargs=1);
gen (const unary_function_ptr * f,int nargs=1);
gen (const gen_map & m);
gen (const eqwdata & );
gen (const grob & );
#ifdef HAVE_GMPXX_H
gen (const mpz_class &);
#endif
gen (const my_mpz &);
void delete_gen();
~gen(){
if ( type>_DOUBLE_ && type!=_FLOAT_
#if !defined SMARTPTR64 // || defined STATIC_BUILTIN_LEXER_FUNCTIONS
&& type!=_FUNC
#endif
){
// optimization for ref_count access must be checked in multi-thread
ref_count_t * rc=(ref_count_t *) & ref_count();
if (*rc!=-1 && !--*rc){
delete_gen();
}
}
}
bool in_eval(int level,gen & evaled,const context * contextptr) const;
inline gen eval(int level,const context * contextptr) const{
// CERR << "eval " << *this << " " << level << endl;
gen res;
// return in_eval(level,res,contextptr)?res:*this;
if (in_eval(level,res,contextptr))
return res;
else
return *this;
}
// inline gen eval() const { return eval(DEFAULT_EVAL_LEVEL,context0); }
bool in_evalf(int level,gen & evaled,const context * contextptr) const;
gen evalf(int level,const context * contextptr) const;
// inline gen evalf() const { return evalf(DEFAULT_EVAL_LEVEL,context0); }
gen evalf_double(int level,const context * contextptr) const ;
gen evalf2double(int level,const context * contextptr) const;
#if defined SMARTPTR64
gen & operator = (const gen & a){
ulonglong al=*((ulonglong *) &a);
unsigned char atype=al&0x1f;
ulonglong tl=*((ulonglong *) this);
// Copy before deleting because the target might be embedded in a
// with a ptr_val.ref_count of a equals to 1
// short int type_save=type; // short int subtype_save=subtype;
* ((ulonglong *) this) = al;
if (atype>_DOUBLE_ && atype!=_FLOAT_
&& (al >> 16) ){
ref_count_t * rc=(ref_count_t *)& ((ref_mpz_t *)(al>>16) )->ref_count;
if (*rc!=-1)
++(*rc); // increase ref count
}
// Now we delete the target
if ( (tl &0x1f)>_DOUBLE_)
delete_ptr( (signed char) ((tl&0xff00)>>8),(tl &0x1f),(ref_mpz_t *) (tl >> 16));
return *this;
}
#else // SMARTPTR64
gen & operator = (const gen & a){
register unsigned t=(type << _DECALAGE) | a.type;
if (!t){
subtype=a.subtype;
val=a.val;
return *this;
}
if (a.type>_DOUBLE_ && a.type!=_FLOAT_
&& a.type!=_FUNC && a.__ZINTptr
){
ref_count_t * rc=(ref_count_t *)&a.ref_count();
if (*rc!=-1)
++(*rc); // increase ref count
}
// Copy before deleting because the target might be embedded in a
// with a ptr_val.ref_count of a equals to 1
short int type_save=type; // short int subtype_save=subtype;
ref_mpz_t * ptr_save = __ZINTptr;
#ifdef DOUBLEVAL
_DOUBLE_val = a._DOUBLE_val;
subtype=a.subtype;
#else
* ((ulonglong *) this) = *((ulonglong * ) &a);
#endif
__ZINTptr=a.__ZINTptr;
type=a.type;
// Now we delete the target
if ( type_save>_DOUBLE_ && type_save!=_FLOAT_
&& type_save!=_FUNC
)
delete_ptr(subtype,type_save,ptr_save);
return *this;
}
#endif // SMARTPTR64
int to_int() const ;
double to_double(const context * contextptr) const;
bool is_vector_of_size(size_t n) const;
bool is_identificateur_with_name(const char * s) const;
bool is_real(GIAC_CONTEXT) const ;
bool is_cinteger() const ;
bool is_integer() const ;
bool is_constant() const;
std::string print(GIAC_CONTEXT) const;
inline const char * printcharptr(GIAC_CONTEXT) const { return print(contextptr).c_str(); };
// if sptr==0, return length required, otherwise print at end of *sptr
int sprint(std::string * sptr,GIAC_CONTEXT) const;
std::string print_universal(GIAC_CONTEXT) const;
std::string print() const;
inline const char * printcharptr() const { return print().c_str(); };
wchar_t * wprint(GIAC_CONTEXT) const ;
// print then convert to a malloc-ated wchar_t *
void modify(int i) { *this =gen(i); };
const char * dbgprint() const;
void void uncoerce() ;() void uncoerce() ;
gen conj(GIAC_CONTEXT) const;
gen re(GIAC_CONTEXT) const ;
gen im(GIAC_CONTEXT) const ;
gen inverse(GIAC_CONTEXT) const;
gen squarenorm(GIAC_CONTEXT) const;
int bindigits() const ;
gen operator [] (int i) const ;
gen operator [] (const gen & i) const;
gen operator_at(int i,GIAC_CONTEXT) const;
gen operator_at(const gen & i,GIAC_CONTEXT) const;
// gen & operator [] (int i) ;
// gen & operator [] (const gen & i) ;
gen operator () (const gen & i,GIAC_CONTEXT) const;
gen operator () (const gen & i,const gen & progname,GIAC_CONTEXT) const;
bool islesscomplexthan(const gen & other) const;
bool is_approx() const ; // true if double/real or cmplx with re/im
int symb_size() const;
gen change_subtype(int newsubtype);
bool is_symb_of_sommet(const unary_function_ptr & u) const ;
bool is_symb_of_sommet(const unary_function_ptr * u) const ;
gen makegen(int i) const; // make a gen of same type as this with integer i
// For compatibility with older versions
inline mpz_t * ref_ZINTptr() const ;
inline real_object * ref_REALptr() const ;
inline gen * ref_CPLXptr() const ;
inline identificateur * ref_IDNTptr() const ;
inline symbolic * ref_SYMBptr() const ;
inline gen * ref_MODptr () const ;
inline Tfraction<gen> * ref_FRACptr() const ;
inline gen * ref_EXTptr () const ;
inline polynome * ref_POLYptr() const ;
inline vecteur * ref_VECTptr() const ;
inline sparse_poly1 * ref_SPOL1ptr() const ;
inline std::string * ref_STRNGptr() const ;
inline unary_function_ptr * ref_FUNCptr() const ;
inline gen_user * ref_USERptr() const ;
inline gen_map * ref_MAPptr() const ;
inline eqwdata * ref_EQWptr() const ;
inline grob * ref_GROBptr() const ;
inline void * ref_POINTER_val() const ;
};
bool ref_mpz_t2gen(ref_mpz_t * mptr,gen & g); // return true if mptr used in g
gen change_subtype(const gen &g,int newsubtype);
gen genfromstring(const std::string & s);
// pointer to an int describing display mode for complex numbers
int * complex_display_ptr(const gen & g);
// value==0 to cartesian, 1 to polar, 2 toggle, 3 count complex
// returns the number of complex
int adjust_complex_display(gen & res,int value);
#if defined(SMARTPTR64)
typedef ulonglong alias_gen;
#else
struct alias_gen {
unsigned char type; // see dispatch.h
signed char subtype;
unsigned short reserved; // not used
#ifdef DOUBLEVAL
longlong value;
#else
long value ;
#endif
};
#endif
class vectpoly:public std::vector<polynome> {
public:
vectpoly():std::vector<polynome>::vector() {};
vectpoly(size_t i,const polynome & p):std::vector<polynome>::vector(i,p) {};
const char * dbgprint(){
#ifndef NSPIRE
CERR << *this << std::endl;
#endif
return "Done";
}
};
struct ref_gen_map {
volatile ref_count_t ref_count;
gen_map m;
#if 1 // def NSPIRE
ref_gen_map(): ref_count(1),m() {}
#else
ref_gen_map(const std::pointer_to_binary_function < const gen &, const gen &, bool> & p): ref_count(1),m(p) {}
#endif
ref_gen_map(const gen_map & M):ref_count(1),m(M) {}
};
struct alias_ref_fraction { ref_count_t ref_count; alias_gen num; alias_gen den; };
struct alias_ref_complex {
ref_count_t ref_count;
int display;
alias_gen re,im;
};
struct ref_vecteur {
volatile ref_count_t ref_count;
vecteur v;
ref_vecteur():ref_count(1) {}
ref_vecteur(unsigned s):ref_count(1),v(s) {}
ref_vecteur(unsigned s,const gen & g):ref_count(1),v(s,g) {}
ref_vecteur(const_iterateur it,const_iterateur itend):ref_count(1),v(it,itend) {}
ref_vecteur(const vecteur & w):ref_count(1),v(w) {}
};
#ifdef SMARTPTR64
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={(ulonglong(ptr) << 16) | (subtype << 8) | type };
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,(ulonglong(ptr) << 16) | (subtype << 8) | type};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{(ulonglong(numptr) << 16) | (numsubtype << 8) | numtype },{(ulonglong(denptr) << 16) | (densubtype << 8) | dentype }};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{(ulonglong(reptr) << 16) | (resubtype << 8) | retype },{(ulonglong(imptr) << 16) | (imsubtype << 8) | imtype }};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{(ulonglong(reptr) << 16) | (resubtype << 8) | retype },{(ulonglong(imptr) << 16) | (imsubtype << 8) | imtype }};
#else // SMARTPTR64
#ifdef DOUBLEVAL
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={type,subtype,0,ulonglong(ptr)};
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,type,subtype,0,ulonglong(ptr)};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{numtype,numsubtype,0,ulonglong(numptr)},{dentype,densubtype,0,ulonglong(denptr)}};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{retype,resubtype,0,ulonglong(reptr)},{imtype,imsubtype,0,ulonglong(imptr)}};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{retype,resubtype,0,ulonglong(reptr)},{imtype,imsubtype,0,ulonglong(imptr)}};
#else // DOUBLEVAL
#define define_alias_gen(name,type,subtype,ptr) alias_gen name={type,subtype,0,long(ptr)};
#define define_alias_ref_symbolic(name,sommet,type,subtype,ptr) alias_ref_symbolic name={-1,(unary_function_eval *)sommet,type,subtype,0,long(ptr)};
#define define_alias_ref_fraction(name,numtype,numsubtype,numptr,dentype,densubtype,denptr) alias_ref_fraction name={-1,{numtype,numsubtype,0,long(numptr)},{dentype,densubtype,0,long(denptr)}};
#define define_alias_ref_complex(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_ref_complex name={-1,0,{retype,resubtype,0,long(reptr)},{imtype,imsubtype,0,long(imptr)}};
#define define_tab2_alias_gen(name,retype,resubtype,reptr,imtype,imsubtype,imptr) alias_gen name[]={{retype,resubtype,0,long(reptr)},{imtype,imsubtype,0,long(imptr)}};
#endif // DOUBLEVAL
#endif // SMARTPTR64
// ? #ifdef __GNUC__
#ifdef IMMEDIATE_VECTOR
struct alias_ref_vecteur { ref_count_t ref_count; const int _taille; const alias_gen * begin_immediate_vect; const alias_gen * end_immediate_vect; void * ptr; };
#define define_alias_ref_vecteur(name,b) alias_ref_vecteur name={-1,sizeof(b)/sizeof(gen),(const alias_gen *)b,(const alias_gen *)b+sizeof(b)/sizeof(gen),0};
#define define_alias_ref_vecteur2(name,b) alias_ref_vecteur name={-1,2,&b[0],&b[2],0};
#else
struct alias_ref_vecteur { ref_count_t ref_count; const alias_gen * begin; const alias_gen * end; const alias_gen * finish; void * ptr; };
#define define_alias_ref_vecteur(name,b) alias_ref_vecteur name={-1,(const alias_gen *)b,(const alias_gen *)b+sizeof(b)/sizeof(gen),(const alias_gen *)b+sizeof(b)/sizeof(gen),0};
#define define_alias_ref_vecteur2(name,b) alias_ref_vecteur name={-1,&b[0],&b[2],&b[2],0};
#endif
struct ref_complex {
volatile ref_count_t ref_count;
int display;
gen re,im;
ref_complex(const gen & R,const gen & I):ref_count(1),display(0),re(R),im(I) {}
ref_complex(const gen & R,const gen & I,int display_mode):ref_count(1),display(display_mode),re(R),im(I) {}
};
struct ref_modulo {
volatile ref_count_t ref_count;
gen n,modulo;
ref_modulo():ref_count(1) {}
ref_modulo(const gen &N,const gen &M):ref_count(1),n(N),modulo(M) {}
};
struct ref_algext {
volatile ref_count_t ref_count;
gen P,Pmin,additional;
ref_algext():ref_count(1) {}
};
bool poly_is_real(const polynome & p);
bool vect_is_real(const vecteur & v,GIAC_CONTEXT);
polynome addpoly(const polynome & p,const gen & c);
polynome subpoly(const polynome & p,const gen & c);
bool islesscomplexthanf(const gen & a,const gen & b);
void islesscomplexthanf_sort(iterateur it,iterateur itend);
void gen_sort_f(iterateur it,iterateur itend,bool (*f)(const gen &a,const gen &b));
void gen_sort_f_context(iterateur it,iterateur itend,bool (*f)(const gen &a,const gen &b,GIAC_CONTEXT),GIAC_CONTEXT);
gen makemap(); // make a new map
gen chartab2gen(char * & s,GIAC_CONTEXT);
bool is_zero(const gen & a,GIAC_CONTEXT0);
bool is_exactly_zero(const gen & a);
bool is_one(const gen & a);
bool is_minus_one(const gen & a);
bool is_sq_minus_one(const gen & a);
bool is_inf(const gen & e);
bool is_undef(const gen & e);
bool is_undef(const polynome & p);
bool is_undef(const vecteur & v);
bool has_inf_or_undef(const gen & g);
bool is_undef(const sparse_poly1 & s);
bool is_zero__VECT(const vecteur & a,GIAC_CONTEXT);
bool has_denominator(const gen & n);
bool has_i(const gen & g);
// basic arithmetic
gen operator && (const gen & a,const gen & b);
gen operator || (const gen & a,const gen & b);
gen operator_plus (const gen & a,const gen & b,GIAC_CONTEXT);
gen operator + (const gen & a,const gen & b);
gen & operator_plus_eq (gen & a,const gen & b,GIAC_CONTEXT);
inline gen & operator += (gen & a,const gen & b){
return operator_plus_eq(a,b,giac::context0);
}
Tfraction<gen> operator + (const Tfraction<gen> & a,const Tfraction<gen> & b); // specialization
gen sym_add (const gen & a,const gen & b,GIAC_CONTEXT);
gen & operator_minus_eq (gen & a,const gen & b,GIAC_CONTEXT);
inline gen & operator -= (gen & a,const gen & b){
return operator_minus_eq(a,b,giac::context0);
}
gen operator_minus (const gen & a,const gen & b,GIAC_CONTEXT);
gen operator - (const gen & a,const gen & b);
gen operator - (const gen & a);
gen sym_sub (const gen & a,const gen & b,GIAC_CONTEXT);
gen operator_times (const gen & a,const gen & b,GIAC_CONTEXT);
gen operator * (const gen & a,const gen & b);
inline gen operator * (int a,const gen & b){ return gen(a)*b; }
inline gen operator * (double a,const gen & b){ return gen(a)*b; }
gen sym_mult (const gen & a,const gen & b,GIAC_CONTEXT);
gen pow(const gen & base,const gen & exponent,GIAC_CONTEXT);
gen giac_pow(const gen & base,const gen & exponent,GIAC_CONTEXT);
gen iquo(const gen & a,const gen & b); // same
gen irem(const gen & a,const gen & b,gen & q); // same
gen smod(const gen & a,const gen & b); // same
void smod(const vecteur & v,const gen & g,vecteur & w);
vecteur smod(const vecteur & a,const gen & b); // same
gen rdiv(const gen & a,const gen & b,GIAC_CONTEXT0); // rational division
inline gen operator /(const gen & a,const gen & b){ return rdiv(a,b); };
gen operator %(const gen & a,const gen & b); // for int only
// gen inv(const gen & a);
gen inv(const gen & a,GIAC_CONTEXT);
inline wchar_t * wprint(const gen & g,GIAC_CONTEXT){ return g.wprint(contextptr); }
inline void swapgen(gen & a,gen &b){
#ifdef SMARTPTR64
std::swap<ulonglong>(* (ulonglong *)&a,* (ulonglong *)&b);
#else
gen tmp=a; a=b; b=tmp;
#endif
}
gen algebraic_EXTension(const gen & a,const gen & v);
gen ext_reduce(const gen & a, const gen & v);
gen maptoarray(const gen_map & m,GIAC_CONTEXT);
gen evalf_VECT(const vecteur & v,int subtype,int level,const context * contextptr);
gen m_gamma(int nbits); // Euler gamma constant precision nbits
gen m_gamma(GIAC_CONTEXT);
gen m_pi(int nbits); // pi precision nbits
gen m_pi(GIAC_CONTEXT);
// a*b -> tmp, may modify tmp in place
void type_operator_times(const gen & a,const gen &b,gen & tmp);
// c += a*b, may modify c in place
/*
inline void type_operator_plus_times(const gen & a,const gen & b,gen & c){
gen g;
type_operator_times(a,b,g);
c += g;
}
*/
void type_operator_plus_times(const gen & a,const gen & b,gen & c);
void type_operator_minus_times(const gen & a,const gen & b,gen & c);
inline void type_operator_plus_times_reduce(const gen & a,const gen & b,gen & c,int reduce){
type_operator_plus_times(a,b,c);
if (reduce)
c=smod(c,reduce);
}
inline void type_operator_reduce(const gen & a,const gen & b,gen & c,int reduce){
type_operator_times(a,b,c);
if (reduce)
c=smod(c,reduce);
}
bool operator ==(const gen & a,const gen & b);
bool operator ==(const gen & a,const identificateur & b);
bool operator_equal(const gen & a,const gen & b,GIAC_CONTEXT);
bool operator !=(const gen & a,const gen & b);
inline bool operator !=(const gen & a,const identificateur & b){ return !(a==b); }
gen equal(const gen & a,const gen &b,GIAC_CONTEXT);
gen equal2(const gen & a,const gen &b,GIAC_CONTEXT);
gen operator !(const gen & a);
int fastsign(const gen & a,GIAC_CONTEXT); // 0 if unknown, 1 if >0, -1 if <0
gen sign(const gen & a,GIAC_CONTEXT);
inline int signint(int i){ return i?(i>0?1:-1):0;}
// Large tests if strictly not precised, if sign is unknown return false
bool is_greater(const gen & a,const gen &b,GIAC_CONTEXT);
bool is_strictly_greater(const gen & a,const gen &b,GIAC_CONTEXT);
inline bool operator > (const gen & a,const gen & b){
return is_strictly_greater(a,b,giac::context0);
}
inline bool operator < (const gen & a, const gen & b) {
return is_strictly_greater (b, a, giac::context0);
}
bool is_positive(const gen & a,GIAC_CONTEXT);
bool is_strictly_positive(const gen & a,GIAC_CONTEXT);
// Large tests if strictly not precised, if sign is unknown make an error
bool ck_is_greater(const gen & a,const gen &b,GIAC_CONTEXT);
bool ck_is_strictly_greater(const gen & a,const gen &b,GIAC_CONTEXT);
bool ck_is_positive(const gen & a,GIAC_CONTEXT);
bool ck_is_strictly_positive(const gen & a,GIAC_CONTEXT);
gen superieur_strict(const gen & a,const gen & b,GIAC_CONTEXT);
gen superieur_egal(const gen & a,const gen & b,GIAC_CONTEXT);
gen inferieur_strict(const gen & a,const gen & b,GIAC_CONTEXT);
gen inferieur_egal(const gen & a,const gen & b,GIAC_CONTEXT);
bool symb_size_less(const gen & a,const gen & b);
gen min(const gen & a, const gen & b,GIAC_CONTEXT);
gen max(const gen & a, const gen & b,GIAC_CONTEXT=context0);
// default context0 is required for instantiation in poly.h
gen factorial(unsigned long int i);
gen comb(unsigned long int i,unsigned long j);
gen perm(unsigned long int i,unsigned long j);
gen pow(const gen & base, unsigned long int exponent);
gen pow(const gen & base, int exponent);
gen pow(unsigned long int base, unsigned long int exponent);
// more advanced arithmetic
gen gcd(const gen & A,const gen & B,GIAC_CONTEXT);
gen gcd(const gen & A,const gen & B);
gen lcm(const gen & a,const gen & b);
gen simplify(gen & n, gen & d);
void egcd(const gen &a,const gen &b, gen & u,gen &v,gen &d );
gen ichinrem(const gen & a,const gen &b,const gen & amod, const gen & bmod);
gen invmod(const gen & A,const gen & modulo);
gen fracmod(const gen & a_orig,const gen & modulo); // -> p/q=a mod modulo
bool fracmod(const gen & a_orig,const gen & modulo,gen & res);
bool in_fracmod(const gen &m,const gen & a,mpz_t & d,mpz_t & d1,mpz_t & absd1,mpz_t &u,mpz_t & u1,mpz_t & ur,mpz_t & q,mpz_t & r,mpz_t &sqrtm,mpz_t & tmp,gen & num,gen & den);
gen powmod(const gen &base,const gen & expo,const gen & modulo);
gen isqrt(const gen & A);
gen re(const gen & a,GIAC_CONTEXT);
gen no_context_re(const gen & a);
gen im(const gen & a,GIAC_CONTEXT);
gen no_context_im(const gen & a);
void reim(const gen & g,gen & r,gen & i,GIAC_CONTEXT);
gen conj(const gen & a,GIAC_CONTEXT);
gen no_context_conj(const gen & a);
gen sq(const gen & a);
gen abs(const gen & a,const context * contextptr=context0);
// default context0 is required for instantiation in poly.h
gen linfnorm(const gen & a,const context * contextptr=context0);
// default context0 is required for instantiation in poly.h
gen arg(const gen & a,GIAC_CONTEXT);
gen arg_CPLX(const gen & a,GIAC_CONTEXT);
int is_perfect_square(const gen & A);
int is_probab_prime_p(const gen & A);
gen nextprime(const gen & a); // more precisely next probably prime
gen prevprime(const gen & a); // more precisely prev probably prime
int jacobi(const gen & A, const gen &B);
int legendre(const gen & A, const gen & B);
vecteur pascal_next_line(const vecteur & v);
vecteur pascal_nth_line(int n);
// convert a __VECTOR__VECT vecteur to a normal vecteur
gen vector2vecteur(const vecteur & v);
// if b is a _MOD, returns a as a b _MOD
gen chkmod(const gen& a,const gen & b);
// make a _MOD a%b
gen makemod(const gen & a,const gen & b);
// same without evaluating %
gen makemodquoted(const gen & a,const gen & b);
// from a sum in x returns a list of [coeff monomial]
// e.g. 5+2x+3*x*y -> [ [5 1] [2 x] [ 3 x*y] ]
vecteur symbolique2liste(const gen & x,GIAC_CONTEXT);
// v should be sorted and shrinked
gen liste2symbolique(const vecteur & v);
bool is_atomic(const gen & e);
gen _FRAC2_SYMB(const fraction & f);
gen _FRAC2_SYMB(const gen & e);
gen _FRAC2_SYMB(const gen & n,const gen & d);
gen string2gen(const std::string & ss,bool remove_ss_quotes=true);
// by default ss is assumed to be delimited by " and "
std::complex<double> gen2complex_d(const gen & e);
gen eval_VECT(const vecteur & v,int subtype,int level,const context * context_ptr );
// functional equivalent of gen methods
inline gen eval(const gen & e,int level,const context * contextptr){ return e.eval(level,contextptr); };
inline gen eval(const gen & e,const context * contextptr){ return e.eval(eval_level(contextptr),contextptr); };
gen no_context_evalf(const gen & e);
gen evalf(const gen & e,int level,const context * contextptr );
gen evalf2bcd_nock(const gen & g0,int level,const context * contextptr);
gen evalf2bcd(const gen & g0,int level,const context * contextptr);
inline gen evalf_double(const gen & e,int level,const context * contextptr){ return e.evalf_double(level,contextptr); };
// return true if g can be converted to a double or real or complex
bool has_evalf(const gen & g,gen & res,int level,const context * contextptr);
inline std::string print(const gen & e,context * contextptr){ return e.print(contextptr); }
inline bool is_real(const gen & g,GIAC_CONTEXT){ return g.is_real(contextptr); }
inline bool is_cinteger(const gen & g){ return g.is_cinteger();} ;
inline bool is_integer(const gen & g){ return g.is_integer(); } ;
double int2double(int i);
inline bool is_constant(const gen & g){ return g.is_constant(); } ;
inline bool is_approx(const gen & g){ return g.is_approx(); };
gen aplatir_fois_plus(const gen & g);
gen collect(const gen & g,GIAC_CONTEXT);
class gen_user{
public:
virtual gen_user * memory_alloc() const { gen_user * ptr = new gen_user(*this); return ptr; }
virtual ~gen_user() {};
// redefine operations if it makes sense.
// You can redefine gen_user + gen_user for speed
virtual gen operator + (const gen &) const { return gensizeerr(gettext("+ not redefined")); }
virtual gen operator + (const gen_user & a) const { return (*this) + gen(a); }
virtual gen operator - (const gen &) const { return gensizeerr(gettext("Binary - not redefined")); }
virtual gen operator - (const gen_user & a) const { return (*this) - gen(a); }
virtual gen operator - () const { return gensizeerr(gettext("Unary - not redefined")); }
virtual gen operator * (const gen &) const { return gensizeerr(gettext("Binary * not redefined")); }
virtual gen operator * (const gen_user & a) const { return (*this) * gen(a); }
virtual gen operator / (const gen_user & a) const { return (*this) * a.inv(); }
virtual gen operator / (const gen & a) const { return gensizeerr(gettext("Binary / not redefined")); }
virtual bool is_zero() const {
#ifndef NO_STDEXCEPT
setsizeerr(gettext("==0 not redefined"));
#endif
return false;
}
virtual bool is_one() const {
#ifndef NO_STDEXCEPT
setsizeerr(gettext("==1 not redefined"));
#endif
return false;
}
virtual bool is_minus_one() const {
#ifndef NO_STDEXCEPT
setsizeerr(gettext("==-1 not redefined"));
#endif
return false;
}
virtual gen inv() const { return gensizeerr(gettext("Inv not redefined")); }
virtual gen conj(GIAC_CONTEXT) const { return gensizeerr(gettext("Conj not redefined"));}
virtual gen re(GIAC_CONTEXT) const { return gensizeerr(gettext("Real part not redefined"));}
virtual gen im(GIAC_CONTEXT) const { return gensizeerr(gettext("Imaginary part not redefined")); }
virtual gen abs(GIAC_CONTEXT) const { return gensizeerr(gettext("Abs not redefined"));}
virtual gen arg(GIAC_CONTEXT) const { return gensizeerr(gettext("Arg not redefined")); }
virtual gen sqrt(GIAC_CONTEXT) const { return gensizeerr(gettext("Sqrt not redefined")); }
virtual gen operator () (const gen &,GIAC_CONTEXT) const { return gensizeerr(gettext("() not redefined")); }
virtual gen operator [] (const gen &) { return gensizeerr(gettext("[] not redefined")); }
virtual bool operator == (const gen &) const {
#ifndef NO_STDEXCEPT
setsizeerr(gettext("== not redefined"));
#endif
return false;
}
virtual bool operator == (const gen_user & a) const { return (*this) == gen(a); }
// must redefine > AND <= since we do not have symetrical type arguments
virtual gen operator > (const gen &) const { return gensizeerr(gettext("> not redefined")); }
virtual gen operator > (const gen_user & a) const { return superieur_strict(*this, gen(a),0); }
virtual gen operator <= (const gen &) const { return gensizeerr(gettext("<= not redefined")); }
virtual gen operator <= (const gen_user & a) const { return inferieur_egal(*this, gen(a),0); }
virtual gen polygcd (const polynome &,const polynome &,polynome &) const { return gensizeerr(gettext("Polynomial gcd not redefined")); }
virtual gen polyfactor (const polynome & p,
factorization & f) const {
return gensizeerr(gettext("Polynomial gcd not redefined"));
}
virtual gen gcd (const gen &) const { return gensizeerr(gettext("gcd not redefined")); }
virtual gen gcd (const gen_user & a) const { return gcd(gen(a)); }
virtual std::string print (GIAC_CONTEXT) const { return "Nothing_to_print";}
const char * dbgprint () const {
static std::string s;
s=this->print(0);
#ifndef NSPIRE
CERR << s << std::endl;
#endif
return s.c_str();
}
virtual std::string texprint (GIAC_CONTEXT) const { return "Nothing_to_print_tex"; }
virtual gen eval(int level,const context * contextptr) const {return *this;};
virtual gen evalf(int level,const context * contextptr) const {return *this;};
virtual gen makegen(int i) const { return string2gen("makegen not redefined"); } ;
virtual gen rand(GIAC_CONTEXT) const { return string2gen("rand not redefined"); };
};
struct ref_gen_user {
volatile ref_count_t ref_count;
gen_user * u;
ref_gen_user(const gen_user & U):ref_count(1),u(U.memory_alloc()) {}
ref_gen_user(gen_user * U):ref_count(1),u(U) {}
~ref_gen_user() {delete u;}
};
std::string print_the_type(int val,GIAC_CONTEXT);
// I/O
#ifdef NSPIRE
template<class T> nio::ios_base<T> & operator<<(nio::ios_base<T> & os,const gen & a){
return os << a.print(context0);
}
template<class T> nio::ios_base<T> & operator>>(nio::ios_base<T> & is,gen & a);
#else
std::ostream & operator << (std::ostream & os,const gen & a);
std::istream & operator >> (std::istream & is,gen & a);
#endif
#if defined(GIAC_GENERIC_CONSTANTS) // || (defined(VISUALC) && !defined(RTOS_THREADX)) || defined(x86_64)
extern const gen zero;
#else
extern const gen & zero;
#endif
struct monome {
gen coeff;
gen exponent;
monome():coeff(0),exponent(0) {};
monome(const gen & mycoeff) : coeff(mycoeff),exponent(zero) {};
monome(const gen &mycoeff,const gen &myexponent) : coeff(mycoeff),exponent(myexponent) {};
// std::string print() const ;
std::string print(GIAC_CONTEXT) const ;
const char * dbgprint() const ;
};
#ifdef NSPIRE
template<class T> nio::ios_base<T> & operator<<(nio::ios_base<T> & os,const monome & m){ return os << m.print() ;}
#else
std::ostream & operator << (std::ostream & os,const monome & m);
#endif
inline bool operator == (const monome & a,const monome & b){ return a.coeff==b.coeff && a.exponent==b.exponent; }
inline bool operator != (const monome & a,const monome & b){ return a.coeff!=b.coeff || a.exponent!=b.exponent; }
polynome apply( const polynome & p, const context * contextptr, gen (* f) (const gen &, const context *));
const char * printi(GIAC_CONTEXT);
std::string hexa_print_ZINT(const mpz_t & a);
std::string octal_print_ZINT(const mpz_t & a);
std::string binary_print_ZINT(const mpz_t & a);
std::string print_ZINT(const mpz_t & a);
std::string printinner_VECT(const vecteur & v, int subtype,GIAC_CONTEXT);
std::string & add_printinner_VECT(std::string & s,const vecteur &v,int subtype,GIAC_CONTEXT);
std::string begin_VECT_string(int subtype,bool tex,GIAC_CONTEXT);
std::string end_VECT_string(int subtype,bool tex,GIAC_CONTEXT);
std::string print_VECT(const vecteur & v,int subtype,GIAC_CONTEXT); // subtype was 0 by default
std::string print_SPOL1(const sparse_poly1 & p,GIAC_CONTEXT);
std::string print_STRNG(const std::string & s);
std::string printint32(int val,int subtype,GIAC_CONTEXT);
std::string print_FLOAT_(const giac_float & f,GIAC_CONTEXT);
// find closing or opening () [] {}
bool matchpos(const std::string & s,int & pos);
std::string cut_string(const std::string & chaine,int nchar,std::vector<int> & ligne_end) ;
std::string calc_endlines_positions(const vecteur & history_in,const vecteur & history_out,int nchar,std::vector<int> & endlines,std::vector<int> & positions);
bool is_operator_char(char c);
void increase_selection(const std::string & s,int & pos1,int& pos2);
void decrease_selection(const std::string & s,int & pos1,int& pos2);
void move_selection_right(const std::string & s,int & pos1, int & pos2);
void move_selection_left(const std::string & s,int & pos1, int & pos2);
std::string remove_extension(const std::string & chaine);
// This type collects global variables to enable threading
struct environment {
gen modulo; // characteristic
bool moduloon; // Set to false if non modular arithmetic required
bool complexe; // true if working on Z/pZ[i]
gen pn; // cardinal of the field, 0 means equal to modulo
gen coeff; // exemple of coeff, so that we can call coeff.makegen
environment(){
modulo=13;
moduloon=false;
complexe=false;
coeff=pn=0;
}
};
struct ref_sparse_poly1 {
volatile ref_count_t ref_count;
sparse_poly1 s;
ref_sparse_poly1(const sparse_poly1 & S):ref_count(1),s(S) {}
};
// extern environment * env;
struct attributs {
int fontsize;
int background;
int text_color;
attributs(int f,int b,int t): fontsize(f),background(b),text_color(t) {};
attributs():fontsize(0),background(0),text_color(0) {};
};
// Terminal data for EQW display
struct eqwdata {
gen g;
attributs eqw_attributs;
int x,y,dx,dy;
bool selected;
bool active;
bool hasbaseline;
bool modifiable;
int baseline;
eqwdata(int dxx,int dyy,int xx, int yy,const attributs & a,const gen& gg):g(gg),eqw_attributs(a),x(xx),y(yy),dx(dxx),dy(dyy),selected(false),active(false),hasbaseline(false),modifiable(true),baseline(0) {};
eqwdata(int dxx,int dyy,int xx, int yy,const attributs & a,const gen& gg,int mybaseline):g(gg),eqw_attributs(a),x(xx),y(yy),dx(dxx),dy(dyy),selected(false),active(false),hasbaseline(true),modifiable(true),baseline(mybaseline) {};
const char * dbgprint(){
#ifndef NSPIRE
CERR << g << ":" << dx<< ","<< dy<< "+"<<x <<","<< y<< "," << baseline << "," << eqw_attributs.fontsize << "," << eqw_attributs.background << "," << eqw_attributs.text_color << std::endl;
#endif
return "Done";
}
};
struct ref_eqwdata {
volatile ref_count_t ref_count;
eqwdata e;
ref_eqwdata(const eqwdata & E): ref_count(1),e(E) {}
};
class identificateur {
public:
int * ref_count;
gen * value;
// std::string * name;
const char * id_name;
vecteur * localvalue;
// value / localvalue might be an assumption if it's a vecteur
// of subtype _ASSUME__VECT
// The first gen of an assumption vecteur is the type (_FRAC for rational)
// If the type is _REAL, the vecteur has 2 other elements
// * an interval or a _SET_VECT of intervals
// where interval=vecteur of length 2 of subtype _LINE__VECT
// * a list of excluded particular values
// If the type is _DOUBLE_ the variable will be evalf-ed but not eval-ed
// This is useful in geometry to make figures and get exact results
// If the type is _INT_ it
short int * quoted;
identificateur();
explicit identificateur(const std::string & s);
explicit identificateur(const char * s);
#ifdef GIAC_HAS_STO_38
explicit identificateur(const char * s, bool StringIsNowYours); // creates identifier. if StringIsNowYours, then the string will be freed when id is destroyed...
#endif
explicit identificateur(const char * s,const gen & e);
identificateur(const std::string & s,const gen & e);
identificateur(const identificateur & s);
~identificateur();
identificateur & operator =(const identificateur & s);
gen gen eval(int level,const gen & orig,const context * context_ptr) ;(int level,const gen & orig,const context * context_ptr) gen eval(int level,const gen & orig,const context * context_ptr) ;
bool in_eval(int level,const gen & orig,gen & evaled,const context * context_ptr, bool No38Lookup=false); // if No38Lookup, does not check if HP38 knows about this name...
const char * print(const context * context_ptr) const ;
std::string name() const { return id_name; }
const char * dbgprint() const {
static std::string s;
s=this->print(context0);
#if 0 // ndef NSPIRE
COUT << s;
#endif
return s.c_str();
}
void void unassign() ;() void unassign() ;
void push(int protection,const gen & e);
bool operator ==(const identificateur & i);
bool operator ==(const gen & i);
inline bool operator !=(const identificateur & i){ return !(*this==i); }
inline bool operator !=(const gen & i){ return !(*this==i);}
void MakeCopyOfNameIfNotLocal(); ///< if the name is not dynamicaly allocated, create a copy for that id.
};
struct ref_identificateur {
volatile ref_count_t ref_count;
identificateur i;
ref_identificateur(const char * s):ref_count(1),i(s){}
ref_identificateur(const std::string & s):ref_count(1),i(s){}
ref_identificateur(const identificateur & s):ref_count(1),i(s){}
};
struct alias_ref_identificateur {
ref_count_t i;
int * ref_count;
gen * value;
const char * id_name;
vecteur * localvalue;
short int * quoted;
};
struct ref_unary_function_ptr {
volatile ref_count_t ref_count;
unary_function_ptr u;
ref_unary_function_ptr(const unary_function_ptr & U):ref_count(1),u(U) {}
ref_unary_function_ptr(const unary_function_ptr * U):ref_count(1),u(*U) {}
};
struct symbolic {
unary_function_ptr sommet;
gen feuille;
symbolic(const unary_function_ptr & o,const gen & e): sommet(o),feuille(e){};
symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2): sommet(o), feuille(makevecteur(e1,e2)) {};
symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2,const gen & e3): sommet(o), feuille(makevecteur(e1,e2,e3)) {};
symbolic(const unary_function_ptr & o,const gen & e1,const gen &e2,const gen & e3,const gen & e4): sommet(o), feuille(makevecteur(e1,e2,e3,e4)) {};
symbolic(const unary_function_ptr * o,const gen & e): sommet(*o),feuille(e){};
symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2): sommet(*o), feuille(makevecteur(e1,e2)) {};
symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2,const gen & e3): sommet(*o), feuille(makevecteur(e1,e2,e3)) {};
symbolic(const unary_function_ptr * o,const gen & e1,const gen &e2,const gen & e3,const gen & e4): sommet(*o), feuille(makevecteur(e1,e2,e3,e4)) {};
symbolic(const symbolic & mys) : sommet(mys.sommet),feuille(mys.feuille) {};
symbolic(const symbolic & mys,const gen & e);
symbolic(const gen & a,const unary_function_ptr & o,const gen & b);
symbolic(const gen & a,const unary_function_ptr * o,const gen & b);
std::string print(GIAC_CONTEXT) const;
const char * dbgprint() const {
static std::string s;
s=this->print(context0);
#if 0 // ndef NSPIRE
COUT << s << std::endl;
#endif
return s.c_str();
}
gen eval(int level,const context * context_ptr) const;
gen evalf(int level,const context * context_ptr) const;
int size() const;
};
struct ref_symbolic {
volatile ref_count_t ref_count;
symbolic s;
ref_symbolic(const symbolic & S):ref_count(1),s(S) {}
};
#ifdef SMARTPTR64
struct alias_ref_symbolic {
ref_count_t ref_count;
unary_function_eval * sommet;
ulonglong feuille;
};
#else
struct alias_ref_symbolic {
ref_count_t ref_count;
unary_function_eval * sommet;
unsigned char type; // see dispatch.h
signed char subtype;
unsigned short reserved; // not used
#ifdef DOUBLEVAL
longlong value;
#else
long value ;
#endif
};
#endif
#ifdef SMARTPTR64
inline mpz_t * gen::ref_ZINTptr() const { return & ((ref_mpz_t *) (* (ulonglong *) this >> 16))->z ; }
inline real_object * gen::ref_REALptr() const { return & ((ref_real_object *) (* (ulonglong *) this >> 16)) ->r; }
inline gen * gen::ref_CPLXptr() const { return & ((ref_complex *)(* (ulonglong *) this >> 16))->re; }
inline gen * gen::ref_MODptr () const { return & ((ref_modulo *)(* (ulonglong *) this >> 16))->n; }
inline gen * gen::ref_EXTptr () const { return & ((ref_algext *)(* (ulonglong *) this >> 16))->P; }
inline vecteur * gen::ref_VECTptr() const { return &((ref_vecteur*)(* (ulonglong *) this >> 16))->v; }
inline sparse_poly1 * gen::ref_SPOL1ptr() const { return &((ref_sparse_poly1*)(* (ulonglong *) this >> 16))->s; }
inline std::string * gen::ref_STRNGptr() const { return &((ref_string*)(* (ulonglong *) this >> 16))->s; }
inline gen_user * gen::ref_USERptr() const { return ((ref_gen_user*)(* (ulonglong *) this >> 16))->u; }
inline gen_map * gen::ref_MAPptr() const { return &((ref_gen_map*)(* (ulonglong *) this >> 16))->m; }
inline eqwdata * gen::ref_EQWptr() const { return &((ref_eqwdata*)(* (ulonglong *) this >> 16))->e; }
inline grob * gen::ref_GROBptr() const { return &((ref_grob*)(* (ulonglong *) this >> 16))->g; }
inline void * gen::ref_POINTER_val() const { return ((ref_void_pointer*)(* (ulonglong *) this >> 16))->p; }
inline Tfraction<gen> * gen::ref_FRACptr() const { return &((ref_fraction *)(* (ulonglong *) this >> 16))->f; }
inline polynome * gen::ref_POLYptr() const { return &((ref_polynome*)(* (ulonglong *) this >> 16))->t; }
inline identificateur * gen::ref_IDNTptr() const {return &((ref_identificateur*)(* (ulonglong *) this >> 16))->i; }
inline symbolic * gen::ref_SYMBptr() const { return &((ref_symbolic*)(* (ulonglong *) this >> 16))->s; }
inline unary_function_ptr * gen::ref_FUNCptr() const { return &((ref_unary_function_ptr*)(* (ulonglong *) this >> 16))->u; }
#else // SMARTPTR64
inline mpz_t * gen::ref_ZINTptr() const { return &__ZINTptr->z; }
inline real_object * gen::ref_REALptr() const { return &__REALptr->r; }
inline gen * gen::ref_CPLXptr() const { return &__CPLXptr->re; }
inline gen * gen::ref_MODptr () const { return &__MODptr->n; }
inline gen * gen::ref_EXTptr () const { return &__EXTptr->P; }
inline vecteur * gen::ref_VECTptr() const { return &__VECTptr->v; }
inline sparse_poly1 * gen::ref_SPOL1ptr() const { return &__SPOL1ptr->s; }
inline std::string * gen::ref_STRNGptr() const { return &__STRNGptr->s; }
inline gen_user * gen::ref_USERptr() const { return __USERptr->u; }
inline gen_map * gen::ref_MAPptr() const { return &__MAPptr->m; }
inline eqwdata * gen::ref_EQWptr() const { return &__EQWptr->e; }
inline grob * gen::ref_GROBptr() const { return &__GROBptr->g; }
inline void * gen::ref_POINTER_val() const { return __POINTERptr->p; }
inline Tfraction<gen> * gen::ref_FRACptr() const { return &__FRACptr->f; }
inline polynome * gen::ref_POLYptr() const { return &__POLYptr->t; }
inline identificateur * gen::ref_IDNTptr() const {return &__IDNTptr->i; }
inline symbolic * gen::ref_SYMBptr() const { return &__SYMBptr->s; }
// inline unary_function_ptr * gen::ref_FUNCptr() const { return &__FUNCptr->u; }
inline unary_function_ptr * gen::ref_FUNCptr() const { return (unary_function_ptr*) &_FUNC_; }
#endif // SMARTPTR64
#ifndef DOUBLEVAL
#define _DOUBLE_val DOUBLE_val()
#define _FLOAT_val FLOAT_val()
#endif // DOUBLEVAL
#define _ZINTptr ref_ZINTptr()
#define _REALptr ref_REALptr()
#define _CPLXptr ref_CPLXptr()
#define _IDNTptr ref_IDNTptr()
#define _SYMBptr ref_SYMBptr()
#define _MODptr ref_MODptr()
#define _FRACptr ref_FRACptr()
#define _EXTptr ref_EXTptr()
#define _POLYptr ref_POLYptr ()
#define _VECTptr ref_VECTptr()
#define _SPOL1ptr ref_SPOL1ptr()
#define _STRNGptr ref_STRNGptr()
#define _FUNCptr ref_FUNCptr()
#define _ROOTptr ref_ROOTptr()
#define _USERptr ref_USERptr()
#define _MAPptr ref_MAPptr()
#define _EQWptr ref_EQWptr()
#define _GROBptr ref_GROBptr()
#define _POINTER_val ref_POINTER_val()
// function that are indexed
extern const alias_type alias_at_plus;
extern const alias_type alias_at_neg;
extern const alias_type alias_at_binary_minus;
extern const alias_type alias_at_prod;
extern const alias_type alias_at_division;
extern const alias_type alias_at_inv;
extern const alias_type alias_at_pow;
extern const alias_type alias_at_exp;
extern const alias_type alias_at_ln;
extern const alias_type alias_at_abs;
extern const alias_type alias_at_arg;
extern const alias_type alias_at_pnt;
extern const alias_type alias_at_point;
extern const alias_type alias_at_segment;
extern const alias_type alias_at_sto;
extern const alias_type alias_at_sin;
extern const alias_type alias_at_cos;
extern const alias_type alias_at_tan;
extern const alias_type alias_at_asin;
extern const alias_type alias_at_acos;
extern const alias_type alias_at_atan;
extern const alias_type alias_at_sinh;
extern const alias_type alias_at_cosh;
extern const alias_type alias_at_tanh;
extern const alias_type alias_at_asinh;
extern const alias_type alias_at_acosh;
extern const alias_type alias_at_atanh;
extern const alias_type alias_at_interval;
extern const alias_type alias_at_union;
extern const alias_type alias_at_minus;
extern const alias_type alias_at_intersect;
extern const alias_type alias_at_not;
extern const alias_type alias_at_and;
extern const alias_type alias_at_ou;
extern const alias_type alias_at_inferieur_strict;
extern const alias_type alias_at_inferieur_egal;
extern const alias_type alias_at_superieur_strict;
extern const alias_type alias_at_superieur_egal;
extern const alias_type alias_at_different;
extern const alias_type alias_at_equal;
extern const alias_type alias_at_equal2;
extern const alias_type alias_at_rpn_prog;
extern const alias_type alias_at_local;
extern const alias_type alias_at_return;
extern const alias_type alias_at_Dialog;
extern const alias_type alias_at_double_deux_points;
extern const alias_type alias_at_pointprod;
extern const alias_type alias_at_pointdivision;
extern const alias_type alias_at_pointpow;
extern const alias_type alias_at_hash;
extern const alias_type alias_at_pourcent;
extern const alias_type alias_at_tilocal;
extern const alias_type alias_at_break;
extern const alias_type alias_at_continue;
extern const alias_type alias_at_ampersand_times;
extern const alias_type alias_at_maple_lib;
extern const alias_type alias_at_unit;
extern const alias_type alias_at_plot_style;
extern const alias_type alias_at_xor;
extern const alias_type alias_at_check_type;
extern const alias_type alias_at_quote_pow;
extern const alias_type alias_at_case;
extern const alias_type alias_at_dollar;
extern const alias_type alias_at_IFTE;
extern const alias_type alias_at_RPN_CASE;
extern const alias_type alias_at_RPN_LOCAL;
extern const alias_type alias_at_RPN_FOR;
extern const alias_type alias_at_RPN_WHILE;
extern const alias_type alias_at_NOP;
extern const alias_type alias_at_unit;
extern const alias_type alias_at_ifte;
extern const alias_type alias_at_for;
extern const alias_type alias_at_bloc;
extern const alias_type alias_at_program;
extern const alias_type alias_at_same;
extern const alias_type alias_at_increment;
extern const alias_type alias_at_decrement;
extern const alias_type alias_at_multcrement;
extern const alias_type alias_at_divcrement;
extern const alias_type alias_at_sq;
extern const alias_type alias_at_display;
extern const alias_type alias_at_of;
extern const alias_type alias_at_at;
extern const alias_type alias_at_normalmod;
extern const alias_type alias_at_pointplus;
extern const alias_type alias_at_pointminus;
#ifdef BCD
inline bool ck_gentobcd(const gen & g,accurate_bcd_float * bcdptr){
if (g.type!=_FLOAT_)
return false;
fExpand(g._FLOAT_val.f,bcdptr);
return true;
}
inline accurate_bcd_float * gentobcd(const gen & g,accurate_bcd_float * bcdptr){
return fExpand(g._FLOAT_val.f,bcdptr);
}
#endif
// should be in input_lexer.h
// return true/false to tell if s is recognized. return the appropriate gen if true
bool CasIsBuildInFunction(char const *s, gen &g);
void sprintfdouble(char *,const char *,double d);
extern "C" const char * caseval(const char *);
// Alloca proposal by Cyrille to make it work on every compiler.
#ifndef ALLOCA
// alloca versions...
#if defined(FREERTOS)
// for systems that do not support alloca or s[size] syntaxes
class Calloca { public:
void *ram;
Calloca(size_t s): ram(malloc(s)) { }
~Calloca() { free(ram); }
};
#define ALLOCA(type, var, size) Calloca alloca##var(size); type *var= (type*)(alloca##var.ram)
#else
#if defined( VISUALC ) || defined( BESTA_OS )
#define ALLOCA(type, var, size) type *var= (type*)alloca(size)
#else
#define ALLOCA(type, var, size) type var[size]
#endif
#endif
#endif
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC
#endif // _GIAC_GEN_H
|