6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
|
// -*- mode:C++ ; compile-command: "g++ -I.. -I../include -g -c -Wall -DHAVE_CONFIG_H -DIN_GIAC csturm.cc" -*-
#include "giacPCH.h"
/*
* Copyright (C) 2000,14 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
using namespace std;
#include <cmath>
#include <stdexcept>
#include <map>
#include "gen.h"
#include "csturm.h"
#include "vecteur.h"
#include "modpoly.h"
#include "unary.h"
#include "symbolic.h"
#include "usual.h"
#include "sym2poly.h"
#include "solve.h"
#include "prog.h"
#include "subst.h"
#include "permu.h"
#include "series.h"
#include "alg_ext.h"
#include "ti89.h"
#include "plot.h"
#include "modfactor.h"
#include"giacintl.h"
#ifndef NO_NAMESPACE_GIAC
namespace giac {
#endif // ndef NO_NAMESPACE_GIAC
// compute Sturm sequence of r0 and r1,
// returns gcd (without content)
// and compute list of quotients, coeffP, coeffR
// such that coeffR*r_(k+2) = Q_k*r_(k+1) - coeffP_k*r_k
gen csturm_seq(modpoly & r0,modpoly & r1,vecteur & listquo,vecteur & coeffP, vecteur & coeffR,GIAC_CONTEXT){
listquo.clear();
coeffP.clear();
coeffR.clear();
if (r0.empty())
return r1;
if (r1.empty())
return r0;
gen tmp;
lcmdeno(r0,tmp,contextptr);
if (ck_is_positive(-tmp,contextptr))
r0=-r0;
r0=r0/abs(lgcd(r0),contextptr);
lcmdeno(r1,tmp,contextptr);
if (ck_is_positive(-tmp,contextptr))
r1=-r1;
r1=r1/abs(lgcd(r0),contextptr);
// set auxiliary constants g and h to 1
gen g(1),h(1);
modpoly a(r0),b(r1),quo,r;
gen b0(1);
for (int loop_counter=0;;++loop_counter){
int m=int(a.size())-1;
int n=int(b.size())-1;
int ddeg=m-n; // should be 1 generically
if (!n) { // if b is constant, gcd=1
return 1;
}
b0=b.front();
if (b.front().type==_VECT) {
// ddeg should be even if b0 is a _POLY1
if (ddeg%2==0)
*logptr(contextptr) << gettext("Singular parametric Sturm sequence ") << a << "/" << b << endl;
}
else
b0=abs(b.front(),contextptr);
coeffP.push_back(pow(b0,ddeg+1));
DivRem(coeffP.back()*a,b,0,quo,r);
listquo.push_back(quo);
coeffR.push_back(g*pow(h,ddeg));
if (r.empty()){
return b/abs(lgcd(b),contextptr);
}
// remainder is non 0, loop continue: a <- b
a=b;
// now divides r by g*h^(m-n) and change sign, result is the new b
b= -r/coeffR.back();
g=b0;
h=pow(b0,ddeg)/pow(h,ddeg-1);
} // end while loop
}
static gen csturm_horner(const modpoly & p,const gen & a){
if (p.size()==1 && p.front().type==_POLY && p.front()._POLYptr->dim==1){
// patch for "sparse modpoly"
vector< monomial<gen> >::const_iterator it=p.front()._POLYptr->coord.begin(),itend=p.front()._POLYptr->coord.end();
gen res=0,anum=a,aden=1,den=1;
int oldpui=0,pui;
if (a.type==_FRAC){
anum=a._FRACptr->num;
aden=a._FRACptr->den;
}
for (;it!=itend;++it){
pui=it->index.front();
if (oldpui){
res = res * pow(anum,oldpui-pui,context0);
den = den * pow(aden,oldpui-pui,context0);
}
res += it->value*den;
oldpui=pui;
}
if (oldpui){
res = res *pow(a,oldpui,context0);
den = den *pow(a,oldpui,context0);
}
return res/den;
}
else
return horner(p,a);
}
static int csturm_vertex_ab(const modpoly & r0,const modpoly & r1,const vecteur & listquo,const vecteur & coeffP, const vecteur & coeffR,const gen & a,int start,GIAC_CONTEXT){
int n=int(listquo.size()),j,k,res=0;
vecteur R(n+2);
R[0]=csturm_horner(r0,a);
R[1]=csturm_horner(r1,a);
for (j=0;j<n;j++)
R[j+2]=(-coeffP[j]*R[j]+R[j+1]*horner(listquo[j],a))/coeffR[j];
// signes
for (j=start;j<n+2;j++){
if (R[j]!=0) break;
}
for (k=j+1;k<n+2;k++){
if (is_zero(R[k])) continue;
if (fastsign(R[j],context0)*fastsign(R[k],context0)<0
// is_positive(-R[j]*R[k],contextptr)
){
res++;
j=k;
}
}
return res;
}
#if 0
// compute vertex index at a (==0 unless s(a)==0)
static int csturm_vertex_a(const modpoly & s,const modpoly & r,const gen & a,int direction,GIAC_CONTEXT){
int j;
modpoly s1,s2;
gen sa=horner(s,a,0,s1);
if (!is_zero(sa)) return 0;
for (j=1;;j++){
sa=horner(s1,a,0,s2);
if (!is_zero(sa))
break;
s1=s2;
}
if (direction==1) j=0;
gen tmp=sign(sa,contextptr)*sign(horner(r,a),contextptr);
return tmp.val*((j%2)?-1:1);
}
#endif
void change_scale(modpoly & p,const gen & l){
int n=int(p.size());
gen lton(l);
for (int i=n-2;i>=0;--i){
p[i] = p[i] * lton;
lton = lton * l;
}
}
void back_change_scale(modpoly & p,const gen & l){
int n=int(p.size());
gen lton(l);
for (int i=n-2;i>=0;--i){
p[i] = p[i] / lton;
lton = lton * l;
}
}
// p(x)->p(a*x+b)
modpoly linear_changevar(const modpoly & p,const gen & a,const gen & b){
modpoly res(taylor(p,b));
change_scale(res,a);
return res;
}
// p(a*x+b)->p(x)
// t=a*x+b -> pgcd(t)=g((t-b)/a)
modpoly inv_linear_changevar(const modpoly & p,const gen & a,const gen & b){
gen A=inv(a,context0);
gen B=-b/a;
modpoly res(taylor(p,B));
change_scale(res,A);
return res;
}
// Find roots of R, S=R' at precision eps, returns number of roots
// if eps==0 does not compute intervals for roots
static int csturm_realroots(const modpoly & S,const modpoly & R,const vecteur & listquo,const vecteur & coeffP, const vecteur & coeffR,const gen & a,const gen & b,const gen & t0, const gen & t1,vecteur & realroots,double eps,GIAC_CONTEXT){
if (is_inf(t0)) // replace with max(R)
return csturm_realroots(S,R,listquo,coeffP,coeffR,a,b,-linfnorm(R,contextptr),t1,realroots,eps,contextptr);
if (is_inf(t1)) // replace with max(R)
return csturm_realroots(S,R,listquo,coeffP,coeffR,a,b,t0,linfnorm(R,contextptr),realroots,eps,contextptr);
int n1=csturm_vertex_ab(S,R,listquo,coeffP,coeffR,t0,1,contextptr);
int n2=csturm_vertex_ab(S,R,listquo,coeffP,coeffR,t1,1,contextptr);
int n=(n2-n1);
if (!eps || !n)
return n;
/* disabled localization of roots, do isolation of roots instead
if (is_strictly_greater(eps,(t1-t0)*abs(b,contextptr),contextptr)){
realroots.push_back(makevecteur(makevecteur(a+t0*b,a+t1*b),n));
return n;
}
*/
if (n==1){
gen T0=t0,T1=t1,T2;
int s0=fastsign(csturm_horner(R,T0),contextptr);
// int s1=fastsign(csturm_horner(R,T1),contextptr);
int s2;
gen delta=evalf_double(log((T1-T0)*abs(b,contextptr)/eps,contextptr)/log(2.,contextptr),1,contextptr);
if (delta.type!=_DOUBLE_){
realroots=vecteur(1,gentypeerr(contextptr));
return -2;
}
int nstep=int(delta._DOUBLE_val+1);
for (int step=0;step<nstep;++step){
T2=(T0+T1)/2;
s2=fastsign(csturm_horner(R,T2),contextptr);
if (!s2){
realroots.push_back(makevecteur(a+T2*b,n));
return n;
}
if (s2==s0)
T0=T2;
else
T1=T2;
}
realroots.push_back(makevecteur(makevecteur(a+T0*b,a+T1*b),n));
return n;
}
gen T0=t0,T1=t1,t01;
for (;;){
t01=(T0+T1)/2;
int n01=csturm_vertex_ab(S,R,listquo,coeffP,coeffR,t01,1,contextptr);
if (n01!=n1 && n01!=n2)
break;
if (n01==n1)
T0=t01;
else
T1=t01;
}
if (csturm_realroots(S,R,listquo,coeffP,coeffR,a,b,T0,t01,realroots,eps,contextptr)==-2)
return -2;
if (csturm_realroots(S,R,listquo,coeffP,coeffR,a,b,t01,T1,realroots,eps,contextptr)==-2)
return -2;
return n;
}
// Find complex sturm sequence for P(a+(b-a)*x)
// If P is "pseudo"-real on [a,b] and eps>0 put roots in [a,b]
// at precision eps inside realroots
// returns a,b,R,S,g,listquo,coeffP,coeffR,typeseq
// with typeseq=0 (complex Sturm) or 1 (limit)
// If b-a is real and horiz_sturm is not empty, it tries to replace
// the variable by im(a)*i in horiz_sturm and if no quotient in horiz_sturm
// has a leading 0 coefficient,
// it returns im(a)*i,im(a)*i+1,R,S,g,listquo,coeffP,coeffR,typeseq
// If b-a is pure imaginary and vert_sturm is not empty, it tries to replace
// the variable by re(a) and returns re(a),re(a)+i,R,S,g,listquo,coeffP,coeffR,typeseq
static vecteur csturm_segment_seq(const modpoly & P,const gen & a,const gen & b,vecteur & realroots,double eps,vecteur & horiz_sturm,vecteur & vert_sturm,GIAC_CONTEXT){
// try with horiz_sturm and vert_sturm
gen ab(b-a);
/* // Optimization fails for sturmab(x^3-1,-1-i,1+i)
if (is_zero(re(ab,contextptr))){ // b-a is pure imaginary
if (vert_sturm.empty()){
gen A=gen(makevecteur(1,0),_POLY1__VECT);
vert_sturm.push_back(undef);
vecteur tmp;
vert_sturm=csturm_segment_seq(P,A,A+cst_i,tmp,eps,horiz_sturm,vert_sturm,contextptr);
if (is_undef(vert_sturm))
return vert_sturm;
}
if (vert_sturm.size()==9){
vecteur res(vert_sturm);
gen A=re(a,contextptr);
res[0]=A; // re(a)
res[1]=A+cst_i; // re(a)+i
res[2]=apply1st(res[2],A,horner); // R
res[3]=apply1st(res[3],A,horner); // S
res[4]=horner(res[4],A); // g
vecteur tmp(*res[5]._VECTptr);
int tmps=tmp.size();
for (int j=0;j<tmps;++j)
tmp[j]=apply1st(tmp[j],A,horner);
res[5]=tmp; // listquo
res[6]=apply1st(res[6],A,horner); // coeffP
res[7]=apply1st(res[7],A,horner); // coeffR
if (res[6].type==_VECT && !equalposcomp(*res[6]._VECTptr,0))
return res;
else
CERR << "list of quotients is not regular" << endl;
}
}
*/
modpoly Q(taylor(P,a));
change_scale(Q,b-a);
// now x is in 0..1
gen gtmp=apply(Q,re,contextptr);
if (gtmp.type!=_VECT)
return vecteur(1,gensizeerr(contextptr));
modpoly R=trim(*gtmp._VECTptr,0);
gtmp=apply(Q,im,contextptr);
if (gtmp.type!=_VECT)
return vecteur(1,gensizeerr(contextptr));
modpoly S=trim(*gtmp._VECTptr,0);
modpoly listquo,coeffP,coeffR;
gen g=csturm_seq(S,R,listquo,coeffP,coeffR,contextptr);
int typeseq=-1;
if (debug_infolevel)
*logptr(contextptr) << "segment " << a << ".." << b << ", im/re:" << S << "|" << R << ", gcd:" << g << endl;
if (g.type==_VECT && g._VECTptr->size()==P.size()){
// if g==P (up to a constant), use real Sturm sequences
if (debug_infolevel)
*logptr(contextptr) << "Real-kind roots: " << g << endl;
R=*g._VECTptr;
S=derivative(R);
g=csturm_seq(S,R,listquo,coeffP,coeffR,contextptr);
typeseq=csturm_realroots(S,R,listquo,coeffP,coeffR,a,b-a,0,1,realroots,eps,contextptr);
if (typeseq==-2)
return realroots;
}
if (g.type==_VECT)
g=inv_linear_changevar(*g._VECTptr,b-a,a);
vecteur res= makevecteur(a,b,R,S,g,listquo,coeffP,coeffR,typeseq);
return res;
}
// index for segment a,b (2* number of roots when summed over a closed
// polygon). Note that if S=ImP along the segment is 0 we remove
// the roots on [a,b] using real Sturm sequences
// If S=0 at a or b, this is simply ignored
// Indeed the computed index is then the same as if S was of the
// sign of R, and since R!=0 if S is 0 this is a property of the vertex
// not of the segment (note that contrary to counting real roots
// on an interval, S can vanish as many times as long as R keeps
// the same sign, without modifying the algebraic number of Im=0
// cuts if S has the same sign on both end)
static int csturm_segment(const vecteur & seq,const gen & a,const gen & b,GIAC_CONTEXT){
gen t0,t1;
if (seq.size()!=9)
return -(RAND_MAX/2);
gen aseq=seq[0];
gen bseq=seq[1];
gen directeur=(b-a)/(bseq-aseq);
t0=(a-aseq)/(bseq-aseq);
if ( !is_zero(im(directeur,contextptr)) || !is_zero(im(t0,contextptr)) )
return -(RAND_MAX/2);
t0=re(t0,contextptr); // t0=normal(t0);
t1=re(t0+directeur,contextptr); // t1=normal(t0+directeur);
int signe=1;
if (is_strictly_greater(t0,t1,contextptr)){
signe=-1;
swapgen(t0,t1);
}
const modpoly & R=*seq[2]._VECTptr;
const modpoly & S=*seq[3]._VECTptr;
gen g=seq[4];
const modpoly & listquo=*seq[5]._VECTptr;
const modpoly & coeffP=*seq[6]._VECTptr;
const modpoly & coeffR=*seq[7]._VECTptr;
int debut=(seq[8].val==-1)?0:1;
int tmp = csturm_vertex_ab(S,R,listquo,coeffP,coeffR,t0,debut,contextptr);
int res = tmp;
tmp = csturm_vertex_ab(S,R,listquo,coeffP,coeffR,t1,debut,contextptr);
res -= tmp;
// tmp = (-csturm_vertex_a(S,R,t0,1,contextptr)+csturm_vertex_a(S,R,t1,-1,contextptr));
// res += tmp;
res=(debut?1:signe)*res;
if (debug_infolevel)
*logptr(contextptr) << "segment " << a << ".." << b << " index contribution " << res << endl;
return res;
}
static bool csturm_square_seq(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,gen & pgcd,vecteur & realroots,double eps,vecteur & seq1,vecteur & seq2,vecteur & seq3,vecteur & seq4,vecteur & horiz_sturm,vecteur & vert_sturm,GIAC_CONTEXT){
gen A=a0+cst_i*b0,B=a1+cst_i*b0;
vecteur rroots;
seq1=csturm_segment_seq(P,A,B,rroots,eps,horiz_sturm,vert_sturm,contextptr);
if (is_undef(seq1))
return false;
pgcd=seq1[4];
if (!is_one(pgcd)){
return false;
}
A=a1+cst_i*b0; B=a1+cst_i*b1;
seq2=csturm_segment_seq(P,A,B,rroots,eps,horiz_sturm,vert_sturm,contextptr);
if (is_undef(seq2))
return false;
pgcd=seq2[4];
if (!is_one(pgcd)){
return false;
}
A=a1+cst_i*b1; B=a0+cst_i*b1;
seq3=csturm_segment_seq(P,A,B,rroots,eps,horiz_sturm,vert_sturm,contextptr);
if (is_undef(seq3))
return false;
pgcd=seq3[4];
if (!is_one(pgcd)){
return false;
}
A=a0+cst_i*b1; B=a0+cst_i*b0;
seq4=csturm_segment_seq(P,A,B,rroots,eps,horiz_sturm,vert_sturm,contextptr);
if (is_undef(seq4))
return false;
pgcd=seq4[4];
if (!is_one(pgcd)){
return false;
}
realroots=mergevecteur(realroots,rroots);
return true;
}
// find 2* number of roots of P inside the square of vertex of affixes a,b
// roots on the square are not counted. P must not vanish at the vertices.
// The complex Sturm sequences must be known
// returns -1 on error
static int csturm_square(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,const vecteur & seq1,const vecteur & seq2,const vecteur & seq3,const vecteur & seq4,GIAC_CONTEXT){
int ind,tmp;
ind = 0;
gen A=a0+cst_i*b0,B=a1+cst_i*b0;
tmp = csturm_segment(seq1,A,B,contextptr);
if (tmp==-(RAND_MAX/2))
return -1;
ind += tmp;
A=a1+cst_i*b0; B=a1+cst_i*b1;
tmp = csturm_segment(seq2,A,B,contextptr);
if (tmp==-(RAND_MAX/2))
return -1;
ind += tmp;
A=a1+cst_i*b1; B=a0+cst_i*b1;
tmp = csturm_segment(seq3,A,B,contextptr);
if (tmp==-(RAND_MAX/2))
return -1;
ind += tmp;
A=a0+cst_i*b1; B=a0+cst_i*b0;
tmp = csturm_segment(seq4,A,B,contextptr);
if (tmp==-(RAND_MAX/2))
return -1;
ind += tmp;
return ind;
}
static void csturm_normalize(modpoly & p,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & roots){
int n=int(p.size())-1;
// Make sure that x->a+i*x does not return a multiple
// of a real polynomial with the multiple non real
// If degree of p is even the multiple will be a real (because of lcoeff)
if (n%2){
// If degree is odd then look at q=p(x-a_{n-1}/n*an)
// it has the same property
// if its cst coeff is zero remove
gen an=p.front();
gen b=p[1];
gen shift=-b/n/an;
modpoly q(taylor(p,shift));
gen q0;
// remove valuation
int qs=int(q.size());
int n1=0;
for (;qs>0;--qs,++n1){
if (!is_zero(q0=q[qs-1]))
break;
}
if (is_zero(re(q0,context0))){
q=cst_i*q;
p=cst_i*p;
}
if (n1){
q=modpoly(q.begin(),q.begin()+qs);
gen a=re(shift,context0),b=im(shift,context0);
if (is_greater(a,a0,context0) && is_greater(b,b0,context0) && is_greater(a1,a,context0) && is_greater(b1,b,context0))
roots.push_back(makevecteur(shift,n1));
p=taylor(q,-shift);
}
}
}
void ab2a0b0a1b1(const gen & a,const gen & b,gen & a0,gen & b0,gen & a1,gen & b1,GIAC_CONTEXT){
a0=re(a,contextptr); b0=im(a,contextptr);
a1=re(b,contextptr); b1=im(b,contextptr);
if (ck_is_greater(a0,a1,contextptr)) swapgen(a0,a1);
if (ck_is_greater(b0,b1,contextptr)) swapgen(b0,b1);
}
// find 2* number of roots of P inside the square of vertex of affixes a,b
// excluding those on the square
// returns -1 on error
int csturm_square(const gen & p,const gen & a,const gen & b,gen& pgcd,GIAC_CONTEXT){
if (p.type==_POLY){
int res=0;
factorization f(sqff(*p._POLYptr));
factorization::const_iterator it=f.begin(),itend=f.end();
for (;it!=itend;++it){
int tmp=csturm_square(polynome2poly1(it->fact),a,b,pgcd,contextptr);
if (tmp==-1)
return -1;
res += it->mult*tmp;
}
return res;
}
if (p.type!=_VECT)
return 0;
modpoly P=*p._VECTptr;
vecteur realroots;
gen a0,b0,a1,b1;
ab2a0b0a1b1(a,b,a0,b0,a1,b1,contextptr);
csturm_normalize(P,a0,b0,a1,b1,realroots);
int evident=0;
if (!realroots.empty()){
gen r=realroots.front();
if (r.type==_VECT && r._VECTptr->size()==2)
r=r._VECTptr->front();
gen rx=re(r,contextptr),ry=im(r,contextptr);
if ( ( is_zero(ry) && (rx==a0 || rx==a1) ) ||
( is_zero(rx) && (ry==b0 || ry==b1) ) )
;
else
evident=1;
}
if (P.size()<2)
return evident;
vecteur seq1,seq2,seq3,seq4,horiz_seq,vert_seq;
if (!csturm_square_seq(P,a0,b0,a1,b1,pgcd,realroots,0.0,seq1,seq2,seq3,seq4,horiz_seq,vert_seq,contextptr)){
if (pgcd.type!=_VECT)
return -1;
modpoly g=(*pgcd._VECTptr)/pgcd[0];
// true factorization found, restart with each factor
modpoly p1=P/g;
int n1=csturm_square(p1,a,b,pgcd,contextptr);
if (n1==-1)
return -1;
int n2=csturm_square(g,a,b,pgcd,contextptr);
if (n2==-1)
return -1;
return evident+n1+n2;
}
int tmp=csturm_square(P,a0,b0,a1,b1,seq1,seq2,seq3,seq4,contextptr);
if (tmp==-1)
return tmp;
return evident+tmp;
}
static void complex_roots(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & realroots,vecteur & complexroots,double eps);
static bool complex_roots_split(const modpoly & P,const gen & pgcd,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & realroots,vecteur & complexroots,double eps){
if (pgcd.type!=_VECT)
return false;
modpoly g=(*pgcd._VECTptr)/pgcd[0];
// true factorization found, restart with each factor
modpoly p1=P/g;
csturm_normalize(p1,a0,b0,a1,b1,realroots);
csturm_normalize(g,a0,b0,a1,b1,realroots);
complex_roots(p1,a0,b0,a1,b1,realroots,complexroots,eps);
complex_roots(g,a0,b0,a1,b1,realroots,complexroots,eps);
return true;
}
#if 0
// check that arg is >=pi/8 (assumes im(g)>=0)
static bool arg_geq_pi_8(const gen & g){
gen gr=re(g,context0),gi=im(g,context0);
if (is_positive(-gr,context0))
return true;
// ? gi/gr>=sqrt(2)-1
gen r=gi/gr+1;
if (is_positive(r*r-2,context0))
return true;
return false;
}
// is im(b/a)>=0, tested without quotient
static bool arg_in_0_pi(const gen & a,const gen & b){
gen A(a),B(b);
if (A.type==_FRAC && is_integer(A._FRACptr->den) && is_positive(A._FRACptr->den,context0))
A=A._FRACptr->num;
if (B.type==_FRAC && is_integer(B._FRACptr->den) && is_positive(B._FRACptr->den,context0))
B=B._FRACptr->num;
gen c=re(A,context0)*im(B,context0)+re(B,context0)*im(A,context0);
return is_positive(c,context0);
}
static gen hornerarg(const modpoly & p,const gen & x){
if (p.empty())
return 0;
if (x.type!=_FRAC || !is_integer(x._FRACptr->den))
return horner(p,x);
fraction & f =*x._FRACptr;
gen num=f.num,den=f.den,d=den;
if (is_positive(-f.den,context0)){
num=-num; den=-den; d=den;
}
modpoly::const_iterator it=p.begin(),itend=p.end();
gen res(*it);
++it;
if (it==itend)
return res;
for (;;){
res=res*num+(*it)*d;
++it;
if (it==itend)
break;
d=d*den;
}
return res;
}
// Find one complex root inside a0,b0->a1,b1, return false if not found
static bool complex_1root(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & complexroots,double eps){
return false; // disabled since it is not faster!!
int step,nstep =int(evalf_double(log(max(a1-a0,b1-b0,context0)/eps,context0)/log(2.0,context0),1,context0)._DOUBLE_val+0.5);
if (nstep<4)
return false;
// First compute P at the 4 vertex and check whether P[vertex_n+1]/P[vertex_n] is in C^+
gen P0=hornerarg(P,a0+cst_i*b0),P2=hornerarg(P,a1+cst_i*b0),
P4=hornerarg(P,a1+cst_i*b1),P6=hornerarg(P,a0+cst_i*b1);
if (!(arg_in_0_pi(P0,P2) && arg_in_0_pi(P2,P4) && arg_in_0_pi(P4,P6) && arg_in_0_pi(P6,P0)))
return false;
gen A0(a0),A2(a1),B0(b0),B2(b1),A1,B1;
for (step=0;step<2*nstep;step++){
A1=(A0+A2)/2;
B1=(B0+B2)/2;
gen P1=hornerarg(P,A1+cst_i*B0),P7=hornerarg(P,A0+cst_i*B1),P8=hornerarg(P,A1+cst_i*B1),P3,P5;
bool found=false;
/*
P6(A0,B2) - P5(A1,B2) - P4(A2,B2)
| | |
P7(A0,B1) - P8(A1,B1) - P3(A2,B1)
| | |
P0(A0,B0) - P1(A1,B0) - P2(A2,B0)
*/
// ? P0, P1, P8, P7
if (arg_in_0_pi(P0,P1) && arg_in_0_pi(P1,P8) && arg_in_0_pi(P8,P7) && arg_in_0_pi(P7,P0)){
A2=A1;
B2=B1;
P2=P1;
P4=P8;
P6=P7;
if (step<nstep)
continue;
found=true;
}
if (!found){
P3=hornerarg(P,A2+cst_i*B1);
// ? P1, P2, P3, P8
if (arg_in_0_pi(P1,P2) && arg_in_0_pi(P2,P3) && arg_in_0_pi(P3,P8) && arg_in_0_pi(P8,P1)){
A0=A1;
B2=B1;
P0=P1;
P4=P3;
P6=P8;
if (step<nstep)
continue;
found=true;
}
}
if (!found){
// P8, P3, P4, P5
P5=hornerarg(P,A1+cst_i*B2);
if (arg_in_0_pi(P8,P3) && arg_in_0_pi(P3,P4) && arg_in_0_pi(P4,P5) && arg_in_0_pi(P5,P8)){
A0=A1;
B0=B1;
P0=P8;
P2=P3;
P6=P5;
if (step<nstep)
continue;
found=true;
}
}
if (!found){
// P7 P8 P5 P6
if (arg_in_0_pi(P7,P8) && arg_in_0_pi(P8,P5) && arg_in_0_pi(P5,P6) && arg_in_0_pi(P6,P7)){
A2=A1;
B0=B1;
P0=P7;
P2=P8;
P4=P5;
if (step<nstep)
continue;
found=true;
}
}
if (!found)
return false;
// Final check that there is indeed a root inside rectangle
// args must be >= pi/8 and degree of (P)*max square length/distance to original square <= pi/8
gen dist=min(min(A0-a0,a1-A2,context0),min(B0-b0,b1-B2,context0),context0);
if (is_zero(dist))
continue;
gen max_sq=max(A2-A0,B2-B0,context0);
if (is_greater((int(P.size())-2)*max_sq/dist,cst_pi/8,context0))
continue;
gen r1=P2/P0, r2=P4/P2, r3=P6/P4, r4=P0/P6;
if (arg_geq_pi_8(r1) && arg_geq_pi_8(r2) && arg_geq_pi_8(r3) && arg_geq_pi_8(r4)){
complexroots.push_back(makevecteur(makevecteur(A0+cst_i*B0,A2+cst_i*B2),1));
return true;
}
}
return false;
}
#endif
static gen round2util(const gen & num,const gen & den,int n){
if (num.type==_CPLX){
gen r=round2util(*num._CPLXptr,den,n);
gen i=round2util(*(num._CPLXptr+1),den,n);
return r+cst_i*i;
}
// num must be a _ZINT
mpz_t tmp1,tmp2;
mpz_init_set(tmp1,*num._ZINTptr);
mpz_mul_2exp(tmp1,tmp1,n+1); // tmp1=2^(n+1)*num
mpz_add(tmp1,tmp1,*den._ZINTptr); // + den
mpz_init_set(tmp2,*den._ZINTptr);
mpz_mul_ui(tmp2,tmp2,2); // tmp2=2*den
mpz_fdiv_q(tmp1,tmp1,tmp2);
gen res=tmp1;
mpz_clear(tmp1); mpz_clear(tmp2);
return res;
}
void in_round2(gen & x,const gen & deuxn, int n){
if (x.type==_INT_ || x.type==_ZINT)
return ;
if (x.type==_FRAC && x._FRACptr->den.type==_CPLX)
x=fraction(x._FRACptr->num*conj(x._FRACptr->den,context0),x._FRACptr->den.squarenorm(context0));
if (x.type==_FRAC && x._FRACptr->den.type==_ZINT &&
(x._FRACptr->num.type==_ZINT ||
(x._FRACptr->num.type==_CPLX && x._FRACptr->num._CPLXptr->type==_ZINT && (x._FRACptr->num._CPLXptr+1)->type==_ZINT))
){
gen num=x._FRACptr->num,d=x._FRACptr->den;
x=round2util(num,d,n);
x=x/deuxn;
return;
}
x=_floor(x*deuxn+plus_one_half,context0)/deuxn;
}
void round2(gen & x,int n){
if (x.type==_INT_ || x.type==_ZINT)
return ;
gen deuxn;
if (n<30)
deuxn = (1<<n);
else {
mpz_t tmp;
mpz_init_set_si(tmp,1);
mpz_mul_2exp(tmp,tmp,n);
deuxn=tmp;
mpz_clear(tmp);
}
in_round2(x,deuxn,n);
}
void round2(gen & x,const gen & deuxn,GIAC_CONTEXT){
if (x.type==_INT_ || x.type==_ZINT)
return;
if (x.type!=_FRAC)
x=_floor(x*deuxn+plus_one_half,context0)/deuxn;
else {
gen n=x._FRACptr->num,d=x._FRACptr->den;
if (d.type==_INT_){
int di=d.val,ni=1;
while (di>1){ di=di>>1; ni=ni<<1;}
if (ni==d.val)
return;
}
n=2*n*deuxn+d;
x=iquo(n,2*d)/deuxn;
}
}
// Find one complex root inside a0,b0->a1,b1, return false if not found
// algo: Newton method in exact mode starting from center
bool newton_complex_1root(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & complexroots,double eps){
if (is_positive(a1-a0-0.01,context0) ||
is_positive(b1-b0-0.01,context0))
return false;
gen x0=(a0+a1)/2+cst_i*(b0+b1)/2;
modpoly Pprime=derivative(P);
int n=int(-std::log(eps)/std::log(2.0)+.5); // for rounding
gen eps2=pow(2,-(n+1),context0);
for (int ii=0;ii<n;ii++){
gen Pprimex0=horner(Pprime,x0,0,false);
if (is_zero(Pprimex0,context0))
return false;
gen dx=horner(P,x0,0,false)/Pprimex0;
gen absdx=dx*conj(dx,context0);
x0=x0-dx;
gen r=re(x0,context0),i=im(x0,context0);
if (is_positive(a0-r,context0) || is_positive(r-a1,context0) ||
is_positive(b0-i,context0) || is_positive(i-b1,context0))
return false;
round2(r,n+4);
round2(i,n+4);
x0=r+cst_i*i;
if (is_positive(absdx-eps2*eps2,context0))
continue;
// make a small square around x0
// and check that there is indeed a root inside
gen A0=r-eps2;
gen A1=r+eps2;
gen B0=i-eps2;
gen B1=i+eps2;
gen tmp;
if (csturm_square(P,A0+cst_i*B0,A1+cst_i*B1,tmp,context0)==2){
complexroots.push_back(makevecteur(makevecteur(A0+cst_i*B0,A1+cst_i*B1),1));
return true;
}
}
return false;
}
// Find complex roots of P in a0,b0 -> a1,b1
static int complex_roots(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,const vecteur & seq1,const vecteur & seq2,const vecteur & seq3,const vecteur & seq4,vecteur & realroots,vecteur & complexroots,double eps,vecteur & horiz_sturm,vecteur & vert_sturm){
int n=csturm_square(P,a0,b0,a1,b1,seq1,seq2,seq3,seq4,context0);
if (debug_infolevel && n)
CERR << a0 << "," << b0 << ".." << a1 << "," << b1 << ":" << n/2 << endl;
if (n<=0)
return 2*n;
if (eps<=0){
*logptr(context0) << gettext("Bad precision, using 1e-12 instead of ")+print_DOUBLE_(eps,14) << endl;
eps=1e-12;
}
if (is_strictly_greater(eps,a1-a0,context0) && is_strictly_greater(eps,b1-b0,context0)){
gen r(makevecteur(a0+cst_i*b0,a1+cst_i*b1));
complexroots.push_back(makevecteur(r,gen(n)/2));
return n;
}
if (n==2 && newton_complex_1root(P,a0,b0,a1,b1,complexroots,eps))
return n;
gen a01=(a0+a1)/2,b01=(b0+b1)/2,pgcd;
vecteur seqvert,seqhoriz;
gen A=a0+cst_i*b01,B=a1+cst_i*b01;
seqhoriz=csturm_segment_seq(P,A,B,realroots,eps,horiz_sturm,vert_sturm,context0);
if (is_undef(seqhoriz)){
realroots=seqhoriz;
return -2;
}
pgcd=seqhoriz[4];
if (is_one(pgcd)){
A=a01+cst_i*b0; B=a01+cst_i*b1;
seqvert=csturm_segment_seq(P,A,B,realroots,eps,horiz_sturm,vert_sturm,context0);
if (is_undef(seqvert)){
realroots=seqvert;
return -2;
}
pgcd=seqvert[4];
}
if (!is_one(pgcd)){
complex_roots_split(P,pgcd,a0,b0,a1,b1,realroots,complexroots,eps);
return n;
}
/*
(a0,b1) - (a01,b1) - (a1,b1) seq3 seq3
| n4 | n3 | seq4 n4 seqvert n3 seq2
(a0,b01) - (a01,b01) - (a1,b01) seqhoriz seqhoriz
| n1 | n2 | seq4 n1 seqvert n2 seq2
(a0,b0) - (a01,b0) - (a1,b0) seq1 seq1
*/
int n1=complex_roots(P,a0,b0,a01,b01,seq1,seqvert,seqhoriz,seq4,realroots,complexroots,eps,horiz_sturm,vert_sturm),nadd;
if (n1==-2)
return -2;
if (n1==n)
return n;
n1 += (nadd=complex_roots(P,a01,b0,a1,b01,seq1,seq2,seqhoriz,seqvert,realroots,complexroots,eps,horiz_sturm,vert_sturm));
if (nadd==-2)
return -2;
if (n1==n)
return n;
n1 += (nadd=complex_roots(P,a01,b01,a1,b1,seqhoriz,seq2,seq3,seqvert,realroots,complexroots,eps,horiz_sturm,vert_sturm));
if (nadd==-2)
return -2;
if (n1==n)
return n;
n1 += (nadd=complex_roots(P,a0,b01,a01,b1,seqhoriz,seqvert,seq3,seq4,realroots,complexroots,eps,horiz_sturm,vert_sturm));
if (nadd==-2)
return -2;
return n;
}
// Find complex roots of P in a0,b0 -> a1,b1
static void complex_roots(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,vecteur & realroots,vecteur & complexroots,double eps){
if (P.size()<2)
return;
vecteur Seq1,Seq2,Seq3,Seq4,horiz_sturm,vert_sturm;
gen pgcd;
if (!csturm_square_seq(P,a0,b0,a1,b1,pgcd,realroots,eps,Seq1,Seq2,Seq3,Seq4,horiz_sturm,vert_sturm,context0))
complex_roots_split(P,pgcd,a0,b0,a1,b1,realroots,complexroots,eps);
else
complex_roots(P,a0,b0,a1,b1,Seq1,Seq2,Seq3,Seq4,realroots,complexroots,eps,horiz_sturm,vert_sturm);
}
// Find complex roots of P in a0,b0 -> a1,b1
bool complex_roots(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,gen & pgcd,vecteur & roots,double eps){
vecteur realroots,complexroots;
complex_roots(P,a0,b0,a1,b1,realroots,complexroots,eps);
if (is_undef(realroots))
return false;
roots=mergevecteur(roots,mergevecteur(realroots,complexroots));
return true;
}
vecteur crationalroot(polynome & p,bool complexe){
vectpoly v;
int i=1;
polynome qrem;
environment * env= new environment;
env->complexe=complexe || !is_zero(im(p,context0));
vecteur w;
if (!do_linearfind(p,env,qrem,v,w,i))
w.clear();
delete env;
p=qrem;
return w;
}
vecteur keep_in_rectangle(const vecteur & croots,const gen A0,const gen & B0,const gen & A1,const gen & B1,bool embed,GIAC_CONTEXT){
vecteur roots;
const_iterateur it=croots.begin(),itend=croots.end();
for (;it!=itend;++it){
gen a=re(*it,contextptr),b=im(*it,contextptr);
if (is_greater(a,A0,contextptr)&&is_greater(A1,a,contextptr)&&is_greater(b,B0,contextptr)&&is_greater(B1,b,contextptr))
roots.push_back(embed?makevecteur(*it,1):*it);
}
return roots;
}
gen square_modulus(const gen & g,GIAC_CONTEXT){
return g.squarenorm(contextptr);
}
// P is the polynomial, P1 derivative, v list of approx roots
// (initially should have at least n bits precision),
// epsn is the target number of bits precision int(std::log(eps)/std::log(2.)-.5);
// epsg2surdeg2 is eps^2/degree(P)^2 as a gen, epsg is the target precision
// v[i] is set by newton_improve to be at distance at most vradius[i] of a root
// kmax is the maximal number of Newton iterations
bool newton_improve(const vecteur & P,const vecteur & P1,bool Preal,vecteur & v,vecteur & vradius,int i,int kmax,int n,int epsn,const gen & epsg2surdeg2,const gen & epsg){
gen r=v[i];
bool nextconj=false;
if (Preal && i+1<int(v.size()))
nextconj=is_exactly_zero(r-conj(v[i+1],context0));
if (r.type==_FRAC || is_cinteger(r))
return true;
// find nearest root from v
gen deltar=plus_inf,delta;
for (unsigned j=0;j<v.size();++j){
if (int(j)==i)
continue;
gen tmp=abs(r-v[j],context0);
if (is_strictly_greater(deltar,tmp,context0))
deltar=tmp;
}
if (is_zero(deltar))
return false;
deltar=deltar/3;
gen sumdr2=0;
int N=n; // effective value of number of bits for computation
#ifdef HAVE_LIBMPFR
if (r.type==_REAL && mpfr_get_prec(r._REALptr->inf)>N)
N=mpfr_get_prec(r._REALptr->inf);
if (r.type==_CPLX && r._CPLXptr->type==_REAL && mpfr_get_prec(r._CPLXptr->_REALptr->inf)>N)
N=mpfr_get_prec(r._CPLXptr->_REALptr->inf);
#endif
#if 0 // def HAVE_LIBMPFI
gen deuxN=pow(2,N,context0);
gen rr,ri,dr,di;
reim(r,rr,ri,context0);
if (Preal && !nextconj)
r=eval(gen(makevecteur(rr-plus_one/deuxN,rr+plus_one/deuxN),_INTERVAL__VECT),1,context0);
else
r=eval(gen(makevecteur(rr-plus_one/deuxN,rr+plus_one/deuxN),_INTERVAL__VECT),1,context0)+cst_i*eval(gen(makevecteur(ri-plus_one/deuxN,ri+plus_one/deuxN),_INTERVAL__VECT),1,context0);
for (int k=0;k<kmax;++k){
// check if root precision is ok
// otherwise try to improve root precision with Newton method
gen P1r=horner(P1,r,0,false);
if (is_exactly_zero(P1r)){
delta=plus_inf;
break;
}
gen Pr=horner(P,r,0,false);
delta=Pr/P1r;
bool test;
if (Preal && ! nextconj){
test=contains(delta,dr);
delta=abs(delta,context0);
}
else {
reim(delta,dr,di,context0);
test= contains(rr,dr) && contains(ri,di);
delta=square_modulus(delta,context0);
}
if (test){
v[i]=r; // we can certify there is a root in r by Brouwer fixed thm
vradius[i]=-1;
if (nextconj){
v[i+1]=conj(r,context0);
vradius[i+1]=vradius[i];
++i;
}
break;
}
if (delta.type==_REAL){
if (real_interval * ptr=dynamic_cast<real_interval *>(delta._REALptr)){
mpfr_t tmp; mpfr_init(tmp);
mpfi_get_right(tmp,ptr->infsup);
delta=real_object(tmp);
mpfr_clear(tmp);
}
}
sumdr2 += delta;
if (!is_greater(deltar*deltar,sumdr2,context0)){
CERR << "Unable to certify " << v[i] << endl ;
return false;
}
if (N<P.size()-epsn){
// add 10 bits of precision or double it
if (N<-epsn/2){
deuxN=deuxN*deuxN;
N*=2;
}
else {
deuxN=1024*deuxN;
N+=10;
}
}
r -= Pr/P1r;
// change precision to N
reim(r,rr,ri,context0);
if (rr.type==_REAL){
if (real_interval * ptr=dynamic_cast<real_interval *>(rr._REALptr))
mpfi_set_prec(ptr->infsup,N);
}
if (ri.type==_REAL){
if (real_interval * ptr=dynamic_cast<real_interval *>(ri._REALptr))
mpfi_set_prec(ptr->infsup,N);
}
r=rr+cst_i*ri;
} // end for k
#else
if (N>int(P.size())/4-epsn/2)
N=int(P.size())/4-epsn/2;
gen deuxN=pow(2,N,context0);
for (int k=0;k<kmax;++k){
in_round2(r,deuxN,N); // round2(r,deuxN,context0);
// check if root precision is ok
// otherwise try to improve root precision with Newton method
gen P1r=horner(P1,r,0,false);
if (is_exactly_zero(P1r)){
delta=plus_inf;
break;
}
gen Pr=horner(P,r,0,false);
delta=square_modulus(Pr,context0)/square_modulus(P1r,context0);
if (is_greater(epsg2surdeg2,delta,context0)){
v[i]=r; // we can certify there is a root at distance <= eps from r
if (is_exactly_zero(Pr))
vradius[i]=0;
else
vradius[i]=n*sqrt(accurate_evalf(delta,100),context0);
// problem with double underflow
if (!is_exactly_zero(vradius[i]))
vradius[i]=min(epsg,pow(plus_two,int(evalf_double(ln(vradius[i],context0),1,context0)._DOUBLE_val/std::log(2.))+1),context0);
if (debug_infolevel)
CERR << CLOCK() << " isolated " << r << " radius " << vradius[i] << endl;
if (nextconj){
v[i+1]=conj(r,context0);
vradius[i+1]=vradius[i];
++i;
}
break;
}
sumdr2 += delta;
if (!is_greater(deltar*deltar,sumdr2,context0)){
CERR << "Unable to certify " << v[i] << endl ;
return false;
}
if (N<int(P.size())-epsn){
// add 10 bits of precision or double it
if (N<-epsn){
deuxN=deuxN*deuxN;
N*=2;
}
else {
deuxN=1024*deuxN;
N+=10;
}
}
in_round2(Pr,deuxN,N); in_round2(P1r,deuxN,N); // round2(Pr,deuxN,context0); round2(P1r,deuxN,context0);
r -= Pr/P1r;
} // end for k
#endif
if (!is_greater(epsg*epsg,delta,context0))
return false;
return true;
}
// find roots of polynomial P at precision eps using proot or
// complex Sturm sequences
// P must have numeric coefficients, in Q[i]
vecteur complex_roots(const modpoly & P,const gen & a0,const gen & b0,const gen & a1,const gen & b1,bool complexe,double eps,bool use_proot){
if (P.empty())
return P;
eps=std::abs(eps);
if (eps>1e-6)
eps=1e-6;
if (use_proot){
int epsn=int(std::log(eps)/std::log(2.)-.5);
gen epsg=pow(2,epsn,context0);
gen epsg2surdeg2=(epsg*epsg)/int((P.size()+1)*(P.size()+1));
// first try proot with double precision, if it's not enough increase
int n=45;
bool Preal=is_zero(im(P,context0));
modpoly P1=derivative(P);
for (;n<400;n*=2){
double cureps=std::pow(2.0,-n);
if (debug_infolevel)
CERR << CLOCK() << " proot at precision " << cureps << endl;
vecteur v=proot(P,cureps,n);
if (debug_infolevel)
CERR << CLOCK() << " proot end at precision " << cureps << endl;
vecteur vradius(v.size());
unsigned i=0;
int kmax=int(std::log(eps)/std::log(cureps))+4;
for (;i<v.size();++i){
newton_improve(P,P1,Preal,v,vradius,i,kmax,n,epsn,epsg2surdeg2,epsg);
} // end for i
if (i==v.size()){
vecteur res;
for (unsigned j=0;j<v.size();++j){
if (Preal && is_zero(im(v[j],context0))){
if (is_exactly_zero(vradius[j]) || vradius[j]==-1){
if (is_greater(v[j],a0,context0) && is_greater(a1,v[j],context0) && is_greater(0,b0,context0) && is_greater(b1,0,context0))
res.push_back(makevecteur(v[j],1));
continue;
}
gen P1=horner(P,v[j]-vradius[j],0,false),P2=horner(P,v[j]+vradius[j],0,false);
if (P1.type==_FRAC) P1=P1._FRACptr->num;
if (P2.type==_FRAC) P2=P2._FRACptr->num;
if (is_strictly_positive(-P1*P2,context0)){
if (is_greater(v[j],a0,context0) && is_greater(a1,v[j],context0) && is_greater(0,b0,context0) && is_greater(b1,0,context0))
res.push_back(makevecteur(eval(change_subtype(makevecteur(v[j]-vradius[j],v[j]+vradius[j]),_INTERVAL__VECT),1,context0),1));
continue;
}
}
gen R,I;
reim(v[j],R,I,context0);
if (is_greater(R,a0,context0) && is_greater(a1,R,context0) && is_greater(I,b0,context0) && is_greater(b1,I,context0)){
if (is_exactly_zero(vradius[j]))
res.push_back(makevecteur(v[j],1));
else {
#ifdef HAVE_LIBMPFI
gen a,b;
reim(v[j],a,b,context0);
res.push_back(makevecteur(eval(change_subtype(makevecteur(a-vradius[j],a+vradius[j]),_INTERVAL__VECT),1,context0)+cst_i*eval(change_subtype(makevecteur(b-vradius[j],b+vradius[j]),_INTERVAL__VECT),1,context0),1));
#else
res.push_back(makevecteur(makevecteur(ratnormal(v[j]-vradius[j]*(1+cst_i)),ratnormal(v[j]+vradius[j]*(1+cst_i))),1));
#endif
}
}
}
return res;
} // end if i==v.size()
} // end for n
CERR << "proot isolation did not work, trying complex Sturm sequences" << endl;
}
bool aplati=(a0==a1) && (b0==b1);
if (!aplati && complexe && (a0==a1 || b0==b1) )
return vecteur(1,gensizeerr(gettext("Square is flat!")));
gen A0(a0),B0(b0),A1(a1),B1(b1);
{
// initial rectangle: |roots|< 1+ max(|a_i|)/|a_n|
gen maxai=_max(*apply(P,abs,context0)._VECTptr,context0);
gen tmp=1+maxai/abs(P.front(),context0);
if (aplati){
A0=-tmp;
B0=-tmp;
A1=tmp;
B1=tmp;
}
if (is_inf(A0)) A0=-tmp;
if (is_inf(B0)) B0=-tmp;
if (is_inf(A1)) A1=tmp;
if (is_inf(B1)) B1=tmp;
}
gen tmp;
modpoly p(*apply(P,exact,context0)._VECTptr);
lcmdeno(p,tmp,context0);
polynome pp(poly12polynome(p));
if (!complexe){
gen tmp=gcd(re(pp,context0),im(pp,context0));
if (tmp.type!=_POLY)
return vecteur(0);
pp=*tmp._POLYptr;
}
vecteur croots=crationalroot(pp,complexe);
vecteur roots=keep_in_rectangle(croots,A0,B0,A1,B1,true,context0);
p=polynome2poly1(pp);
gen an=p.front();
if (!is_zero(im(an,context0)))
p=conj(p.front(),context0)*p;
if (!complexe){ // real root isolation
modpoly R=p;
modpoly S=derivative(R);
vecteur listquo,coeffP,coeffR;
csturm_seq(S,R,listquo,coeffP,coeffR,context0);
// sparse polynomial patch
if (pp.coord.size()<p.size()/10.){
R=vecteur(1,poly12polynome(R,1,1));
S=vecteur(1,poly12polynome(S,1,1));
}
csturm_realroots(S,R,listquo,coeffP,coeffR,0,1,A0,A1,roots,eps,context0);
return roots;
}
csturm_normalize(p,A0,B0,A1,B1,roots);
gen pgcd;
if (!complex_roots(p,A0,B0,A1,B1,pgcd,roots,eps))
return vecteur(1,gensizeerr(context0));
return roots;
}
gen complexroot(const gen & g,bool complexe,GIAC_CONTEXT){
vecteur v=gen2vecteur(g);
bool use_vas=!complexe ,use_proot=true;
#ifndef HAVE_LIBMPFR
use_proot=false;
#endif
bool isolation=false;
if (!v.empty() && v[0]==at_sturm){
use_vas=false;
use_proot=false;
v.erase(v.begin());
}
if (v.empty())
return gensizeerr(contextptr);
if (v.size()<2){
isolation=true;
v.push_back(epsilon(contextptr));
}
if (v.size()==3)
v.insert(v.begin()+1,epsilon(contextptr));
gen p=v.front(),prec=evalf_double(v[1],1,contextptr);
if (prec.type!=_DOUBLE_)
return gentypeerr(contextptr);
double eps=prec._DOUBLE_val;
if (eps>=1.0)
eps=std::pow(10.,-eps);
if (eps<=0)
eps=epsilon(contextptr);
if (eps<=0)
eps=1e-12;
if (v[0].type==_VECT && has_num_coeff(v[0])){
v=proot(*v[0]._VECTptr,eps);
vecteur w;
for (unsigned i=0;i<v.size();++i){
if (is_zero(im(v[i],contextptr)))
w.push_back(makevecteur(v[i],1));
}
return w;
}
unsigned vs=unsigned(v.size());
gen A(0),B(0),a0(minus_inf),b0(minus_inf),a1(plus_inf),b1(plus_inf);
if (vs>3){
A=v[2];
B=v[3];
a0=re(A,contextptr); b0=im(A,contextptr);
a1=re(B,contextptr);b1=im(B,contextptr);
}
if (is_greater(a0,a1,contextptr))
swapgen(a0,a1);
if (is_greater(b0,b1,contextptr))
swapgen(b0,b1);
vecteur vas_res;
if (p.type==_VECT){
if (use_vas && vas(*p._VECTptr,a0,a1,isolation?1e300:eps,vas_res,true,contextptr))
return vas_res;
return complex_roots(*p._VECTptr,a0,b0,a1,b1,complexe,eps,use_proot);
}
if (use_vas && vas(symb2poly_num(v[0],contextptr),a0,a1,isolation?1e300:eps,vas_res,true,contextptr))
return vas_res;
vecteur l,l0;
lidnt(p,l0,false);
if (l0.size()!=1)
return gentypeerr(contextptr);
l=alg_lvar(p);
gen px=_e2r(makesequence(p,l),contextptr);
if (px.type==_FRAC)
px=px._FRACptr->num;
if (px.type!=_POLY)
return vecteur(0);
factorization f(sqff(*px._POLYptr));
factorization::const_iterator it=f.begin(),itend=f.end();
vecteur res;
for (;it!=itend;++it){
gen P=_poly2symb(makesequence(it->fact,l),contextptr);
P=_e2r(makesequence(P,l0.front()),contextptr);
if (P.type!=_VECT)
continue;
vecteur tmp=complex_roots(*P._VECTptr,a0,b0,a1,b1,complexe,eps,use_proot);
if (is_undef(tmp))
return tmp;
iterateur jt=tmp.begin(),jtend=tmp.end();
for (;jt!=jtend;++jt){
if (jt->type==_VECT && jt->_VECTptr->size()==2)
jt->_VECTptr->back()=it->mult*jt->_VECTptr->back();
}
res=mergevecteur(res,tmp);
}
return res;
}
gen _complexroot(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
gen res=complexroot(g,true,contextptr);
if (res.type==_VECT)
gen_sort_f_context(res._VECTptr->begin(),res._VECTptr->end(),complex_sort,contextptr);
return res;
// return _sorta(complexroot(g,true,contextptr),contextptr);
}
static const char _complexroot_s []="complexroot";
static define_unary_function_eval (__complexroot,&giac::_complexroot,_complexroot_s);
define_unary_function_ptr5( at_complexroot ,alias_at_complexroot,&__complexroot,0,true);
gen _realroot(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
gen res; bool evalf_after=false;
if (g.type==_VECT && !g._VECTptr->empty() && g._VECTptr->back()==at_evalf){
res=complexroot(gen(vecteur(g._VECTptr->begin(),g._VECTptr->end()-1),g.subtype),false,contextptr);
evalf_after=true;
}
else
res=complexroot(g,false,contextptr);
if (res.type!=_VECT)
return res;
vecteur v=*res._VECTptr;
for (unsigned i=0;i<v.size();++i){
if (v[i].type==_VECT && v[i]._VECTptr->size()==2){
gen a=v[i]._VECTptr->front(),b=v[i]._VECTptr->back();
if (a.type==_VECT && a.subtype==_INTERVAL__VECT){
if (evalf_after)
v[i]=evalf((a._VECTptr->front()+a._VECTptr->back())/2,1,contextptr);
else {
a=eval(a,1,contextptr);
v[i]=makevecteur(a,b);
}
}
else {
if (evalf_after)
v[i]=evalf(a,1,contextptr);
}
}
}
return v;
}
static const char _realroot_s []="realroot";
static define_unary_function_eval (__realroot,&giac::_realroot,_realroot_s);
define_unary_function_ptr5( at_realroot ,alias_at_realroot,&__realroot,0,true);
static vecteur crationalroot(const gen & g0,bool complexe){
gen g(g0),a,b;
if (g.type==_VECT){
if (g.subtype==_SEQ__VECT){
vecteur & tmp=*g._VECTptr;
if (tmp.size()!=3)
return vecteur(1,gendimerr(context0));
g=tmp[0];
a=tmp[1];
b=tmp[2];
}
else {
g=poly12polynome(*g._VECTptr);
}
}
gen a0,b0,a1,b1;
ab2a0b0a1b1(a,b,a0,b0,a1,b1,context0);
vecteur l;
lvar(g,l);
if (l.empty())
return vecteur(0);
if (l.size()!=1)
return vecteur(1,gentypeerr(context0));
gen px=_e2r(makevecteur(g,l),context0);
if (px.type==_FRAC)
px=px._FRACptr->num;
if (px.type!=_POLY)
return vecteur(0);
factorization f(sqff(*px._POLYptr));
factorization::const_iterator it=f.begin(),itend=f.end();
vecteur res;
for (;it!=itend;++it){
polynome p=it->fact;
vecteur tmp=crationalroot(p,complexe);
res=mergevecteur(res,tmp);
}
if (a0!=a1 || b0!=b1)
res=keep_in_rectangle(res,a0,b0,a1,b1,false,context0);
return res;
}
gen _crationalroot(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
return crationalroot(g,true);
}
static const char _crationalroot_s []="crationalroot";
static define_unary_function_eval (__crationalroot,&giac::_crationalroot,_crationalroot_s);
define_unary_function_ptr5( at_crationalroot ,alias_at_crationalroot,&__crationalroot,0,true);
gen _rationalroot(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
return crationalroot(g,false);
}
static const char _rationalroot_s []="rationalroot";
static define_unary_function_eval (__rationalroot,&giac::_rationalroot,_rationalroot_s);
define_unary_function_ptr5( at_rationalroot ,alias_at_rationalroot,&__rationalroot,0,true);
// convert numerator of g to a list
vecteur symb2poly_num(const gen & g_,GIAC_CONTEXT){
gen g(g_);
if (g.type!=_VECT)
g=makesequence(g,ggb_var(g));
gen tmp=_symb2poly(g,contextptr);
if (tmp.type==_FRAC)
tmp=tmp._FRACptr->num;
if (tmp.type!=_VECT)
return vecteur(1,gensizeerr(contextptr));
return *tmp._VECTptr;
}
// VAS implementation. Based on Xcas implementation by Alkiviadis G. Akritas,
// A first C++ implementation was written by Spyros Kehagias and others
// but it was too close to the Xcas code
// This implementation is much faster, using basic data structures of giac
// number of sign changes of the coefficients of P, returns -1 on error
int variations(const modpoly & P,GIAC_CONTEXT){
int res=0,n=int(P.size());
if (!n)
return -1;
int previous=fastsign(P.front(),contextptr);
if (previous==0)
return -1;
for (int i=1;i<n;i++){
if (is_exactly_zero(P[i]))
continue;
int current=fastsign(P[i],contextptr);
if (!current)
return -1;
if (current!=previous){
++res;
previous=current;
}
}
return res;
}
#ifndef M_LN2
#define M_LN2 0.6931471805599454
#endif
// like (ln(n/d)+shift*ln2)/expo, but faster for large integers
gen LMQ_evalf(const gen & n,const gen & d,double shift,int expo,GIAC_CONTEXT){
#ifndef USE_GMP_REPLACEMENTS
if (is_integer(n) && is_integer(d)){
long int nexp=0,dexp=0;
double nmant,dmant;
if (n.type==_INT_)
nmant=n.val;
else
nmant=mpz_get_d_2exp (&nexp,*n._ZINTptr);
if (d.type==_INT_)
dmant=d.val;
else
dmant=mpz_get_d_2exp (&dexp,*d._ZINTptr);
return ( std::log(-nmant/dmant) + (nexp-dexp+shift)*M_LN2 )/expo;
}
#endif
return ( ln(evalf(-n/d,1,contextptr),contextptr) + shift*M_LN2 )/gen(expo);
}
static bool compute_lnabsmantexpo(const vecteur & cl,vector<double> & cllnabsmant,vector<long int> & clexpo,vector<short int> & clsign,GIAC_CONTEXT){
int k=int(cl.size());
cllnabsmant.resize(k);
clexpo.resize(k);
clsign.resize(k);
for (int i=0;i<k;++i){
gen tmp=sign(cl[i],contextptr);
if (tmp.type!=_INT_)
return false;
clsign[i]=tmp.val;
double mant;
long int expo=0;
if (is_integer(cl[i])){
if (cl[i].type==_ZINT){
#ifdef USE_GMP_REPLACEMENTS
mant=evalf_double(cl[i],1,contextptr)._DOUBLE_val;
#else
mant=mpz_get_d_2exp (&expo,*cl[i]._ZINTptr);
#endif
}
else mant=cl[i].val;
}
else {
if (cl[i].type==_DOUBLE_){
mant=cl[i]._DOUBLE_val;
}
else {
mant=evalf_double(cl[i],1,contextptr)._DOUBLE_val;
}
}
mant=std::log(std::abs(mant));
cllnabsmant[i]=mant;
clexpo[i]=expo;
}
return true;
}
gen posubLMQ(const modpoly & P,GIAC_CONTEXT){
//---implements the Local_Max_Quadratic method (LMQ) to compute an
//---upper bound on the values of the POSITIVE roots of p(x).
//---Reference:"Linear and Quadratic Complexity Bounds on the Values of the
//---Positive Roots of Polynomials" by Alkiviadis G. Akritas.
//---Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009.
int k=int(P.size());
if (k<=1)
return 0;
vecteur cl;
if (is_strictly_positive(P.front(),contextptr))
cl=P;
else
cl=-P;
reverse(cl.begin(),cl.end());
vector<double> cllnabsmant;
vector<long int> clexpo;
vector<short int> clsign;
if (!compute_lnabsmantexpo(cl,cllnabsmant,clexpo,clsign,contextptr))
return gensizeerr(contextptr);
gen tempmax=minus_inf;
vector<int> timesused(k+1,1);
for (int m=k-1;m>=1;--m){
if (clsign[m-1]==-1){ // is_strictly_positive(-cl[m-1],contextptr)
gen tempmin=plus_inf;
for (int n=k;n>m;--n){
if (clsign[n-1]==1){ // is_strictly_positive(cl[n-1],contextptr)
gen temp= (cllnabsmant[m-1]-cllnabsmant[n-1] + (clexpo[m-1]-clexpo[n-1]+timesused[n-1])*M_LN2)/(n-m);// LMQ_evalf(cl[m-1],cl[n-1],timesused[n-1],n-m,contextptr);
// gen temp=pow(-cl[m-1]/cl[n-1]*pow(plus_two,timesused[n-1]),inv(n-m,contextptr),contextptr);
// temp=evalf(temp,1,contextptr);
++timesused[n-1];
if (is_strictly_greater(tempmin,temp,contextptr))
tempmin=temp;
}
}
if (is_strictly_greater(tempmin,tempmax,contextptr))
tempmax=tempmin;
}
}
return _ceil(65*exp(tempmax,contextptr)/64,contextptr); // small margin
}
gen _posubLMQ(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
vecteur v;
if (g.type==_VECT && g.subtype!=_SEQ__VECT)
v=*g._VECTptr;
else
v=symb2poly_num(g,contextptr);
return posubLMQ(v,contextptr);
}
static const char _posubLMQ_s []="posubLMQ";
static define_unary_function_eval (__posubLMQ,&giac::_posubLMQ,_posubLMQ_s);
define_unary_function_ptr5( at_posubLMQ ,alias_at_posubLMQ,&__posubLMQ,0,true);
gen poslbdLMQ(const modpoly & P,GIAC_CONTEXT){
//---implements the Local_Max_Quadratic method (LMQ) to compute a
//---lower bound on the values of the POSITIVE roots of p(x).
//---Reference:"Linear and Quadratic Complexity Bounds on the Values of the
//---Positive Roots of Polynomials" by Alkiviadis G. Akritas.
//---Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009.
int k=int(P.size());
if (k<=1)
return 0;
vecteur cl(P);
reverse(cl.begin(),cl.end());
if (is_strictly_positive(-cl.front(),contextptr))
cl=-cl;
vector<double> cllnabsmant;
vector<long int> clexpo;
vector<short int> clsign;
if (!compute_lnabsmantexpo(cl,cllnabsmant,clexpo,clsign,contextptr))
return gensizeerr(contextptr);
gen tempmax=minus_inf;
vector<int> timesused(k,1);
for (int m=1;m<k;++m){
if (clsign[m]==-1){ // is_strictly_positive(-cl[m],contextptr)
gen tempmin=plus_inf;
for (int n=0;n<m;++n){
if (clsign[n]==1){ // is_strictly_positive(cl[n],contextptr)
// gen temp=pow(-cl[m]/cl[n]*pow(plus_two,timesused[n]),inv(m-n,contextptr),contextptr);
// temp=evalf(temp,1,contextptr);
gen temp= (cllnabsmant[m]-cllnabsmant[n] + (clexpo[m]-clexpo[n]+timesused[n])*M_LN2)/(m-n);// LMQ_evalf(cl[m],cl[n],timesused[n],m-n,contextptr);
++timesused[n];
if (is_strictly_greater(tempmin,temp,contextptr))
tempmin=temp;
}
}
if (is_strictly_greater(tempmin,tempmax,contextptr))
tempmax=tempmin;
}
}
tempmax=tempmax/M_LN2;
tempmax=-_ceil(tempmax,contextptr);
tempmax=pow(plus_two,tempmax,contextptr);
return tempmax;
}
gen _poslbdLMQ(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
vecteur v;
if (g.type==_VECT && g.subtype!=_SEQ__VECT)
v=*g._VECTptr;
else
v=symb2poly_num(g,contextptr);
return poslbdLMQ(v,contextptr);
}
static const char _poslbdLMQ_s []="poslbdLMQ";
static define_unary_function_eval (__poslbdLMQ,&giac::_poslbdLMQ,_poslbdLMQ_s);
define_unary_function_ptr5( at_poslbdLMQ ,alias_at_poslbdLMQ,&__poslbdLMQ,0,true);
vecteur makeinterval(const gen & a,const gen & b){
if (is_strictly_greater(a,b,context0))
return makevecteur(b,a);
else
return makevecteur(a,b);
}
bool vas_sort(const gen & a,const gen &b){
gen a1(a),b1(b);
if (a.type==_VECT && a._VECTptr->size()==2)
a1=a._VECTptr->front();
if (b.type==_VECT && b._VECTptr->size()==2)
b1=b._VECTptr->front();
return is_strictly_greater(b1,a1,context0);
}
// P is assumed to be squarefree and without rational roots
// find roots of P((ax+b)/(cx+d))
vecteur VAS_positive_roots(const modpoly & P,const gen & ap,const gen & bp,const gen & cp,const gen & dp,GIAC_CONTEXT){
//---The steps below correspond to the steps described in the reference below.
//---Reference: "A Comparative Study of Two Real Root Isolation Methods"
//---by Alkiviadis G. Akritas and Adam W. Strzebonski.
//---Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
vecteur res; // root isolation intervals
vecteur intervals_to_process;
// STEP 1
int v0=variations(P,contextptr);
if (!v0)
return res;
gen ub=posubLMQ(P,contextptr);
if (v0==1)
return vecteur(1,makeinterval(0,ap*ub));
intervals_to_process.push_back(makevecteur(ap, bp, cp, dp, P,v0));
// STEP 2
while (!intervals_to_process.empty()){
gen tmp=intervals_to_process.back();
intervals_to_process.pop_back();
if (tmp.type!=_VECT || tmp._VECTptr->size()!=6)
return vecteur(1,gensizeerr("VAS interval"+tmp.print()));
vecteur & tmpv=*tmp._VECTptr;
gen a=tmpv[0],b=tmpv[1],c=tmpv[2],d=tmpv[3], genf=tmpv[4],genv=tmpv[5];
if (genf.type!=_VECT || genv.type!=_INT_)
return vecteur(1,gensizeerr("VAS interval"+tmp.print()));
int v=genv.val;
modpoly f = *genf._VECTptr;
// STEP 3
gen lb=poslbdLMQ(f,contextptr);
// STEP 4
if (is_strictly_greater(lb,16,contextptr)){
change_scale(f,lb);
a=lb*a; c=lb*c; lb=1;
}
// STEP 5
if (is_greater(lb,1,contextptr)){
// f=taylor(f,lb);
change_scale(f,lb);
f=taylor(f,1);
back_change_scale(f,lb);
b = lb*a + b; d = lb*c + d;
if (is_zero(f.back())){
res.push_back(b/d);
f.pop_back();
}
v=variations(f,contextptr);
if (!v)
continue;
if (v==1){
if (!is_zero(c))
res.push_back(makeinterval(a/c,b/d));
else
res.push_back(makeinterval(b,b+a*posubLMQ(f,contextptr)));
continue;
}
}
// STEP 6
modpoly f1=taylor(f,1),f2;
gen a1=a, b1=a+b, c1=c, d1=c+d;
int r=0;
if (is_zero(f1.back())){
f1.pop_back();
res.push_back(b1/d1);
r=1;
}
int v1=variations(f1,contextptr);
int v2=v-v1-r;
gen a2=b, b2=a+b, c2=d, d2=c+d;
// STEP 7
if (v2>1){
f2=f;
reverse(f2.begin(),f2.end());
f2=taylor(f2,1);
if (is_zero(f2.back()))
f2.pop_back();
v2=variations(f2,contextptr);
}
// STEP 8
if (v1<v2){
swapgen(a1,a2);
swapgen(b1,b2);
swapgen(c1,c2);
swapgen(d1,d2);
swap(f1,f2);
int i=v1; v1=v2; v2=i;
}
// STEP 9
if (v1==0) continue;
if (v1==1){
if (!is_zero(c1))
res.push_back(makeinterval(a1/c1,b1/d1));
else
res.push_back(makeinterval(b1,b1 + a1*posubLMQ(f1,contextptr)));
}
else
intervals_to_process.push_back(makevecteur(a1,b1,c1,d1,f1,v1));
// STEP 10
if (v2==0) continue;
if (v2==1){
if (!is_zero(c2))
res.push_back(makeinterval(a2/c2,b2/d2));
else
res.push_back(makeinterval(b2,b2 + a2*posubLMQ(f2,contextptr)));
}
else
intervals_to_process.push_back(makevecteur(a2,b2,c2,d2,f2,v2));
}
gen_sort_f(res.begin(),res.end(),vas_sort);
return res;
}
gen _VAS_positive(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
vecteur v;
if (g.type==_VECT && g.subtype!=_SEQ__VECT)
v=*g._VECTptr;
else
v=symb2poly_num(g,contextptr);
return VAS_positive_roots(v,1,0,0,1,contextptr);
}
static const char _VAS_positive_s []="VAS_positive";
static define_unary_function_eval (__VAS_positive,&giac::_VAS_positive,_VAS_positive_s);
define_unary_function_ptr5( at_VAS_positive ,alias_at_VAS_positive,&__VAS_positive,0,true);
// square-free factorization of p, then remove all exponents
// optionally remove factors with even multiplicities
modpoly remove_multiplicities(const modpoly & p,factorization & f,bool odd_only,GIAC_CONTEXT){
vecteur res(1,1),tmp;
polynome P;
poly12polynome(p,1,P,1);
P=P/lgcd(P);
f=sqff(P);
factorization::const_iterator it=f.begin(),itend=f.end();
for (;it!=itend;++it){
if (odd_only && it->mult%2==0)
continue;
polynome2poly1(it->fact,1,tmp);
res=operator_times(res,tmp,0);
}
return res;
}
gen vas(const modpoly & p,GIAC_CONTEXT){
vecteur v(p);
vecteur res;
bool has_zero=false;
if (is_zero(v.back())){
has_zero=true;
v.pop_back();
}
res=VAS_positive_roots(v,1,0,0,1,contextptr);
vecteur w(v);
change_scale(w,-1);
if (w.size()%2==0)
w=-w;
if (w==v){
v=-res;
reverse(v.begin(),v.end());
iterateur it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (it->type==_VECT)
reverse(it->_VECTptr->begin(),it->_VECTptr->end());
}
if (has_zero)
v.push_back(0);
res=mergevecteur(v,res);
}
else {
v=VAS_positive_roots(w,-1,0,0,1,contextptr);
if (has_zero)
v.push_back(0);
res=mergevecteur(v,res);
}
return res;
}
gen _VAS(const gen & g,GIAC_CONTEXT){
if ( g.type==_STRNG && g.subtype==-1) return g;
vecteur v;
if (g.type==_VECT && g.subtype!=_SEQ__VECT)
v=*g._VECTptr;
else
v=symb2poly_num(g,contextptr);
factorization f;
v=remove_multiplicities(v,f,false,contextptr);
return vas(v,contextptr);
}
static const char _VAS_s []="VAS";
static define_unary_function_eval (__VAS,&giac::_VAS,_VAS_s);
define_unary_function_ptr5( at_VAS ,alias_at_VAS,&__VAS,0,true);
static const double bisection_newton_eps=1e-3;
// returns true if a root of p is found by Newton method, such that res-eps>a0
// res+eps<b0 and sign of p changes between res-eps and res+eps
static bool bisection_newton(const modpoly & P,const modpoly & Pprime,const gen & a0,const gen & a1,gen & x0,double eps,gen & eps2,GIAC_CONTEXT){
if (is_greater(bisection_newton_eps,x0-a0,contextptr) || is_greater(bisection_newton_eps,a1-x0,contextptr))
return false; // bisection is faster if the root is too close to the isolation interval boundaries
int n=int(-std::log(eps)/std::log(2.0)+.5); // for rounding
eps2=pow(2,-(n+1),contextptr);
gen deuxn4(pow(2,n+4,contextptr));
in_round2(x0,deuxn4,n+4); // round2(x0,deuxn4,contextptr);
for (int ii=0;ii<n;ii++){
gen Pprimex0=horner(Pprime,x0,0,false);
if (is_zero(Pprimex0,contextptr))
return false;
gen Px0=horner(P,x0,0,false);
in_round2(Px0,deuxn4,n+4); // round2(Px0,deuxn4,contextptr);
in_round2(Pprimex0,deuxn4,n+4); // round2(Pprimex0,deuxn4,contextptr);
gen dx=Px0/Pprimex0;
in_round2(dx,deuxn4,n+4); // round2(dx,deuxn4,contextptr);
x0=x0-dx;
if (is_positive(a0-x0,contextptr) || is_positive(x0-a1,contextptr))
return false;
if (is_greater(abs(dx,contextptr),eps2,contextptr))
continue;
if (is_positive(-horner(P,x0-eps2,0,false)*horner(P,x0+eps2,0,false),contextptr))
return true;
}
return false;
}
gen bisection(const modpoly & p,const gen & a0,const gen &b0,double eps,GIAC_CONTEXT){
int nsteps=int(std::ceil(std::log(evalf_double(b0-a0,1,contextptr)._DOUBLE_val/eps)/M_LN2));
int trynewtonstep=int(nsteps-std::log(bisection_newton_eps/eps)/M_LN2);
gen a(a0),b(b0),m,eps2;
modpoly dp=derivative(p);
int s1=fastsign(horner(p,a,0,false),contextptr);
if (s1==0)
s1=fastsign(horner(dp,a,0,false),contextptr);
int s2=fastsign(horner(p,b,0,false),contextptr);
if (s2==0)
s2=-fastsign(horner(dp,b,0,false),contextptr);
if (s1==s2)
return undef;
for (int i=0;i<nsteps;++i){
m=(a+b)/2;
if (i==trynewtonstep && bisection_newton(p,dp,a0,b0,m,eps,eps2,contextptr))
return makevecteur(m-eps2,m+eps2);
int s=fastsign(horner(p,m,0,false),contextptr);
if (s==0)
return m;
if (s==s1)
a=m;
else
b=m;
}
return makevecteur(a,b);
}
int multiplicity(const factorization & f,const gen & interval,GIAC_CONTEXT){
factorization::const_iterator it=f.begin(),itend=f.end();
if (interval.type==_VECT && interval._VECTptr->size()==2){
for (;it!=itend;++it){
if (is_strictly_positive(-it->fact(interval._VECTptr->front())*it->fact(interval._VECTptr->back()),contextptr))
return it->mult;
}
for (it=f.begin();it!=itend;++it){
if (is_positive(-it->fact(interval._VECTptr->front())*it->fact(interval._VECTptr->back()),contextptr))
return it->mult;
}
}
else {
for (;it!=itend;++it){
if (is_zero(it->fact(interval)))
return it->mult;
}
}
return 0;
}
static void add_vasres(vecteur & vasres,const gen & a,const gen & a0,const gen & b0,int mult,bool with_mult,GIAC_CONTEXT){
if (a0==b0 || (is_greater(a,a0,contextptr) && is_greater(b0,a,contextptr)) )
vasres.push_back(with_mult?gen(makevecteur(a,mult)):a);
}
// isolate and find real roots of P at precision eps between a and b
// returns a list of intervals or of rationals
bool vas(const modpoly & P,const gen & a0,const gen &b0,double eps,vecteur & vasres,bool with_mult,GIAC_CONTEXT){
if (P.size()<=3){
if (P.size()<2)
return true;
gen a(P[0]),b(P[1]);
if (P.size()==2){
a=-b/a;
add_vasres(vasres,a,a0,b0,1,with_mult,contextptr);
return true;
}
gen c(P[2]);
gen delta=b*b-4*a*c;
if (is_zero(delta)){
a=-b/a/2;
add_vasres(vasres,a,a0,b0,2,with_mult,contextptr);
return true;
}
if (is_positive(delta,contextptr)){
delta=sqrt(delta,contextptr)/a/2;
c=-b/a/2;
add_vasres(vasres,c-delta,a0,b0,1,with_mult,contextptr);
add_vasres(vasres,c+delta,a0,b0,1,with_mult,contextptr);
}
return true;
}
gen a(a0),b(b0);
if (a==b){
a=minus_inf;
b=plus_inf;
}
// check and convert coeffs of P
modpoly p(P);
iterateur it=p.begin(),itend=p.end();
for (;it!=itend;++it){
*it=exact(*it,contextptr);
}
gen tmp;
lcmdeno(p,tmp,contextptr);
for (it=p.begin();it!=itend;++it){
if (!is_integer(*it))
return false;
}
p=divvecteur(p,lgcd(p));
factorization f;
p=remove_multiplicities(p,f,false,contextptr);
tmp=vas(p,contextptr);
if (tmp.type!=_VECT)
return false;
vecteur v=*tmp._VECTptr;
// now improve precision by bisection
it=v.begin(),itend=v.end();
for (;it!=itend;++it){
if (it->type!=_VECT){
if (is_greater(*it,a,contextptr) && is_greater(b,*it,contextptr)){
if (with_mult){
int n=multiplicity(f,*it,contextptr);
vasres.push_back(makevecteur(*it,n));
}
else
vasres.push_back(*it);
}
continue;
}
if (it->_VECTptr->size()!=2)
return false;
gen A=it->_VECTptr->front(),B=it->_VECTptr->back();
if (is_strictly_greater(a,B,contextptr) || is_strictly_greater(A,b,contextptr))
continue;
gen interval=bisection(p,max(A,a,contextptr),min(B,b,contextptr),eps,contextptr);
if (is_undef(interval))
continue;
if (interval.type==_VECT)
interval.subtype=_INTERVAL__VECT;
if (with_mult)
vasres.push_back(makevecteur(interval,multiplicity(f,interval,contextptr)));
else
vasres.push_back( (interval.type==_VECT && interval._VECTptr->size()==2)?evalf((interval._VECTptr->front()+interval._VECTptr->back())/2,1,contextptr):interval);
}
return true;
}
#ifndef NO_NAMESPACE_GIAC
} // namespace giac
#endif // ndef NO_NAMESPACE_GIAC
|