Blame view

Giac_maj/giac-1.4.9/src/alg_ext.h 4.38 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  // -*- mode:C++ ; compile-command: "g++ -I.. -g -c alg_ext.cc" -*-
  /*
   *  Copyright (C) 2001,2014 B. Parisse, Institut Fourier, 38402 St Martin d'Heres
   *
   *  This program is free software; you can redistribute it and/or modify
   *  it under the terms of the GNU General Public License as published by
   *  the Free Software Foundation; either version 3 of the License, or
   *  (at your option) any later version.
   *
   *  This program is distributed in the hope that it will be useful,
   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   *  GNU General Public License for more details.
   *
   *  You should have received a copy of the GNU General Public License
   *  along with this program. If not, see <http://www.gnu.org/licenses/>.
   */
  #ifndef _GIAC_ALG_EXT_H
  #define _GIAC_ALG_EXT_H
  #include "first.h"
  
  #include <string>
  #include <map>
  #include "global.h"
  
  #ifndef NO_NAMESPACE_GIAC
  namespace giac {
  #endif // ndef NO_NAMESPACE_GIAC
    class gen;
    struct unary_function_ptr;
    struct symbolic;
  
    bool proot_cached(const vecteur & v,double eps,vecteur & res);
    bool proot_cache(const vecteur & v,double eps,const vecteur & res);
  
    bool galoisconj_cached(const vecteur & v,vecteur & res);
    bool galoisconj_cache(const vecteur & v,const vecteur & res);
    vecteur galoisconj(const vecteur & v,GIAC_CONTEXT);
    bool conj_in_nf(const vecteur & w,gen & g,GIAC_CONTEXT);
  
    bool islesscomplex(const gen & a,const gen & b);
    bool is_sqrt(const gen & a,gen & arg);
    gen select_root(const vecteur & v,GIAC_CONTEXT);
    gen in_select_root(const vecteur & a,bool reel,GIAC_CONTEXT,double eps=1e-14);
    bool is_known_rootof(const vecteur & v,gen & symroot,GIAC_CONTEXT);
    gen horner_rootof(const vecteur & p,const gen & g,GIAC_CONTEXT);
    bool has_rootof_value(const gen & Pmin,gen & value,GIAC_CONTEXT);
  
    gen alg_evalf(const gen & a,const gen &b,GIAC_CONTEXT);
    gen approx_rootof(const gen & e,GIAC_CONTEXT);
    gen common_EXT(gen & a,gen & b,const vecteur * l,GIAC_CONTEXT);
    gen common_minimal_POLY(const gen & ga,const gen & gb, gen & a,gen & b,int &k,GIAC_CONTEXT);
    gen algebraic_EXTension(const gen & a,const gen & v);
    gen ext_reduce(const gen & a, const gen & v);
    gen ext_reduce(const gen & e);
    void clean_ext_reduce(vecteur & v);
    void clean_ext_reduce(gen & g);
    gen ext_add(const gen & a,const gen & b,GIAC_CONTEXT);
    gen ext_sub(const gen & a,const gen & b,GIAC_CONTEXT);
    gen ext_mul(const gen & a,const gen & b,GIAC_CONTEXT);
    gen inv_EXT(const gen & a);
    gen symb_rootof(const gen & p,const gen &pmin,GIAC_CONTEXT);
    gen rootof(const gen & e,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_rootof ;
    vecteur min_pol(gen & a);
    
    // Return the signed subresultant Sturm sequence for a rational
    // fraction g with respect to x
    // A squarefree factorization is performed first
    // Factors of even mult are discarded
    // Factors of odd multiplicities generate one vecteur of dense
    // polynomials (also coded as vecteur)
    // The content of the numerator and denominator are returned as well
    vecteur sturm(const gen &g,const gen & x,GIAC_CONTEXT);
    extern const unary_function_ptr * const  at_sturm ;
    // Number of sign changes of g when x is inside the ]a,b[ interval
    // Zeros of g of even multiplicities are not counted
    // Zeros of g of odd multiplicites are counted once
    // g must be a rational fraction with respect to x
    // a should be < b
    // If sturmab returns 0, then the sign is constant positive
    // If sturmab returns -1, the sign is constant negative
    int sturmab(const gen & g,const gen &x,const gen & a,const gen & b,GIAC_CONTEXT);
    gen _sturmab(const gen & g_orig,GIAC_CONTEXT);
    gen _sturm(const gen & g,GIAC_CONTEXT);
    gen _sturmseq(const gen & g,GIAC_CONTEXT);
  
    extern const unary_function_ptr * const  at_sturmab ;
    int sturmsign(const gen & a,bool strict,GIAC_CONTEXT);
    // find extremals values of g, return type of g (0 nothing assumed, 1 real, 2 integer)
    int find_range(const gen & g,vecteur & a,GIAC_CONTEXT);
    // minmax=-1 min 0 both 1 max
    gen fminmax(const gen & g,int minmax,GIAC_CONTEXT);
    bool find_good_eval(const polynome & F,polynome & Fb,vecteur & b);
    typedef std::map<gen,gen,comparegen > rootmap;
    rootmap & symbolic_rootof_list();
    rootmap & proot_list();
    rootmap & galoisconj_list();
  
  #ifndef NO_NAMESPACE_GIAC
  } // namespace giac
  #endif // ndef NO_NAMESPACE_GIAC
  
  #endif // _GIAC_ALG_EXT_H