Blame view

Giac_maj/giac-1.4.9/check/cas.tst 8.86 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  pi/4,
  atan(2),
  -atan(4/3)+2*pi/2,
  1-2*i,
  1-2*i,
  -3-4*i,
  1,
  -3,
  2,
  4,
  10,
  4,
  sqrt(5),
  5,
  -1,
  15,
  1,
  x-1,
  1,
  x-1,
  20,
  matrix[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],
  matrix[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]],
  x^4+12*x^3+54*x^2+108*x+81,
  (x+3)^4,
  (x-1)*(x+1)*(x^2+1),
  ln(abs(x)),
  atan(x),
  1/2*atan(x/2),
  1/2*atan(x/2),
  30,
  -1/4*ln(abs(x-1))+1/4*ln(abs(x+1))+1/2*atan(x),
  1/3,
  [[-2,1],[3/2,-1/2]],
  [[7,10],[15,22]],
  [[1,0],[0,1]],
  1,
  0,
  [[2,-1]],
  [[-3,3,-1]],
  40,
  [[1,0,1],[0,1,1]],
  [[1,3]],
  poly1[1,-5,-2],
  poly1[1,-13,1,0],
  poly1[1,-11,-7,2],
  -2,
  -2,
  0,
  matrix[[1,1,2],[2,3,5],[3,6,9]],
  50,
  matrix[[1+i,1,2],[2,3,5],[3,6,9-i]],
  1/8,
  1/8,
  7/4,
  -1/(x+2),
  1+3/(x-2)-2/(x-1),
  ((2*x-2)*(x^2-3*x+2)-(x^2-2*x+3)*(2*x-3))/(x^2-3*x+2)^2,
  (-2*x+3)/(x^2-3*x+2)^2,
  (2*x-2)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3),
  60,
  4*x^3-15*x^2+22*x-13,
  -1,
  -1/3,
  +infinity,
  2,
  2*cos(2*x)+1,
  -1/pi+1/pi^2*(x-pi)+(pi^2-6)/(6*pi^3)*(x-pi)^2+(-pi^2+6)/(6*pi^4)*(x-pi)^3+(-pi^4+20*pi^2-120)/(120*pi^5)*(x-pi)^4+(pi^4-20*pi^2+120)/(120*pi^6)*(x-pi)^5+(x-pi)^6*order_size(x-pi),
  -1/pi+1/pi^2*(x-pi)+(pi^2-6)/(6*pi^3)*(x-pi)^2+(x-pi)^3*order_size(x-pi),
  -cos(1)+(-cos(1)+1/2*sin(1))*(x-1)+(-5/6*cos(1)+1/2*sin(1))*(x-1)^2+(x-1)^3*order_size(x-1),
  70,
  [[1,0,-2],[0,1,4]],
  [[1,0,0,1/2],[0,1,0,-5/2],[0,0,1,1/2]],
  3/4*sin(x)-1/4*sin(3*x),
  2*cos(2*x),
  3/4*cos(x)+1/4*cos(3*x),
  1/2*cos(x-y)+1/2*cos(x+y),
  cos(x)*cos(y)-sin(x)*sin(y),
  4*cos(x)^3-3*cos(x),
  4*cos(x)^2-2,
  80,
  4*cos(x)^2-2,
  4*cos(x)^2-2,
  4*cos(x)^2-2,
  -infinity,
  +infinity,
  0,
  0,
  +infinity,
  +infinity,
  90,
  sqrt(3),
  sqrt(3),
  (-2*cos(x)+1)*sin(x)/((cos(x)-1)*(2*cos(x)+1)),
  -sqrt(3)/2+2*sqrt(3)/2/2,
  0,
  1,
  8,
  3,
  10,
  100,
  2,
  1,
  5,
  157289831983,
  21,
  157289831983,
  [[1,0],[0,1]],[[1,1],[0,1]],
  [[1,1],[0,1]],
  "Not diagonalizable at eigenvalue 1",
  [[1,3,-3/2],[1,0,3],[1,-3,-3/2]],
  [[5,0,0],[0,2,0],[0,0,2]],
  [[5,0,0],[0,2,0],[0,0,-2]],
  [[1,2,-1],[1,0,2],[1,-2,-1]],[[5,0,0],[0,2,0],[0,0,2]],
  [[1,2,-1],[1,0,2],[1,-2,-1]],[[5,0,0],[0,2,0],[0,0,2]],
  [[1,2,1],[0,1,0],[1,2,0]],[[2,1,0],[0,2,1],[0,0,2]],
  "Not diagonalizable at eigenvalue 2",
  [[2,1,0],[0,2,1],[0,0,2]],
  [[-1,1],[1,1]],[[0,0],[0,2]],
  [[4,0,0],[0,2,0],[0,0,1]],[[1,1,0],[0,1,1],[0,0,1]],
  [[2,0,0],[0,0,1],[0,1,0]],[[1,1,0],[0,1,0],[0,0,1]],
  [[4,2,0],[0,2,0],[0,0,1]],[[1,1,0],[0,1,1],[0,0,1]],
  [[0,0,1,0],[0,0,-2,1],[-24,12,1,0],[24,-36,6,0]],[[1,1,0,0],[0,1,1,0],[0,0,1,1],[0,0,0,1]],
  [[2,0,0],[2,0,1],[0,1,0]],[[1,1,0],[0,1,0],[0,0,1]],
  [[1,5,5],[-2,0,5],[1,-5,5]],[[3,0,0],[0,-3,0],[0,0,-3]],
  [[4,4,3,6,-7],[-4,0,3,-6,7],[4,4,1,0,0],[4,4,1,0,2],[0,0,0,6,-9]],[[1,1,0,0,0],[0,1,1,0,0],[0,0,1,0,0],[0,0,0,-1,1],[0,0,0,0,-1]],
  [[1,0],[0,1]],[[1,1],[0,1]],
  [1,0,-1,0,1,0,-1,0,1],
  [1,0,1],
  [1,-1],
  3*x^2-1,
  y+1,
  x,
  x,
  y+1,
  y,
  -x+2*4*y^3*z,
  -x,
  poly1[-1,0,0,3,2.1],
  poly1[3,2.1],
  poly1[3*x,-x^4+2.1],
  poly1[z,3*x,-x^4+2.1],
  x*z+y*z+x+y,
  x*z^2+y*z^2+2*x*z+2*y*z+x+y,
  x*y^2+x*z^2+y*z^2+x^2*y+x^2*z+y^2*z+2*x*y*z,
  [33,35],
  [23,35],
  "No Integer Solution Error: Bad Argument Value",
  [8,10],
  "No Integer Solution Error: Bad Argument Value",
  1,
  1,
  0,
  0,
  9856989898997,
  97160249868928888261606031,
  97160249868928888261605967,
  9716024986892879,
  9856989898997,
  9856989898901,
  list[-1,1],
  list[-2,2],
  list[-sqrt(3),sqrt(3)],
  list[1/3*x^3],
  -1,
  0,
  0,
  1,
  exp(x*2),
  exp(x*5),
  exp(x*2)+exp(x*y),
  exp(x*n)+exp(x*2),
  exp(6*x)+2*exp(4*x)+exp(2*x),
  [sin(x),y],
  [exp(x),sin(y),ln(x)],
  [x,y],
  [x,y],
  [x,y],
  -4*p^3+27*q^2,
  0,
  -1,
  0,
  2,
  salut,
  (x+2)*x+3,
  ((x*x+5)*x+2)*x+3,
  (x*x*x+2)*x+3,
  y*y-1,
  (y+2)*y-1,
  1/x+1/(x-1),
  (x+1)*(x-1),
  [-5.0,-3.0,2.0,4.0],
  [-1.41421356237,1.41421356237],
  -1,
  3432,
  2*x+y=1,
  poly1[1,1,-2,0],
  [[sqrt(2),0],[0,-sqrt(2)]],
  [[2,0],[0,-2]],
  [[3,0],[0,-1]],
  [[1,1],[sqrt(2),-sqrt(2)]],
  [[1,-1],[1,1]],
  [[1,-1],[1,1]],
  2*x=2,
  2*x=2,
  list[1],
  list[1],
  10*x*2,
  2*x*2,
  3.36588393923,
  0.0,
  0,
  2*sqrt(3)/2*2,
  3.46410161514,
  2*sqrt(3)/2*2,
  2.0,
  2,
  3,
  poly1[1,1.0,-2.0,0.0],
  4*x^2+4*x+1,
  16*x^2,
  4*x,
  -1,
  1,
  2,
  12,
  36,
  51291,
  957707601542056644794343323422908171970,
  0,
  97160249868928888261606010,
  9856989898997,
  97160249868928888261606010,
  -9856989898997,
  -2,
  GF(2,a^2+a+1,[a,FF],undef),
  ((1 % 2)*x+1 % 2)*((1 % 2)*x+FF(a))*(x+FF(a+1)),
  GF(2,j^2+j+1,[j,F4],undef),
  [0,F4(j)],
  [0,0],[F4(j),0],[0,F4(j)],[F4(j),F4(j)],
  x^2+1/2*x+1/3,
  1,
  [[0,0,0,-4],[1,0,0,0],[0,1,0,4],[0,0,1,0]],
  [[-4,0,-4,0],[-2*sqrt(2),2,2*sqrt(2),2],[2,2*sqrt(2),2,-2*sqrt(2)],[sqrt(2),1,-sqrt(2),1]],[[sqrt(2),1,0,0],[0,sqrt(2),0,0],[0,0,-sqrt(2),1],[0,0,0,-sqrt(2)]],
  [[0,0,0,0,0,-4],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,4],[0,0,0,1,0,0],[0,0,0,0,1,0]],
  [[-408,0,-48-192*i,rootof([[-12,12*i,72+12*i,60-72*i,-108-132*i,396+84*i],[1,0,-9,-4,27,-36,-23]]),-48+192*i,0],[rootof([[4,-16,-40,76,212,-244],[1,0,-9,-4,27,-36,-23]]),rootof([[-8,-2,80,52,-152,182],[1,0,-9,-4,27,-36,-23]]),rootof([[-4,4*i,24+4*i,20-24*i,-36-44*i,132+28*i],[1,0,-9,-4,27,-36,-23]]),rootof([[-4*i,-4,40*i,72+8*i,32-84*i,-180+136*i],[1,0,-9,-4,27,-36,-23]]),rootof([[-4,-4*i,24-4*i,20+24*i,-36+44*i,132-28*i],[1,0,-9,-4,27,-36,-23]]),rootof([[-2*i,2,20*i,-36+4*i,-16-42*i,90+68*i],[1,0,-9,-4,27,-36,-23]])],[rootof([[8,2,-80,-52,152,-182],[1,0,-9,-4,27,-36,-23]]),408,rootof([[-2*i,-2,20*i,36+4*i,16-42*i,-90+68*i],[1,0,-9,-4,27,-36,-23]]),-24-96*i,rootof([[2*i,-2,-20*i,36-4*i,16+42*i,-90-68*i],[1,0,-9,-4,27,-36,-23]]),48-192*i],[204,rootof([[-6,24,60,-114,-318,366],[1,0,-9,-4,27,-36,-23]]),24+96*i,rootof([[12,-12*i,-72-12*i,-60+72*i,108+132*i,-396-84*i],[1,0,-9,-4,27,-36,-23]]),24-96*i,rootof([[6,6*i,-36+6*i,-30-36*i,54-66*i,-198+42*i],[1,0,-9,-4,27,-36,-23]])],[rootof([[-2,8,20,-38,-106,122],[1,0,-9,-4,27,-36,-23]]),rootof([[-8,-2,80,52,-152,182],[1,0,-9,-4,27,-36,-23]]),rootof([[2,-2*i,-12-2*i,-10+12*i,18+22*i,-66-14*i],[1,0,-9,-4,27,-36,-23]]),rootof([[5*i,5,-50*i,-90-10*i,-40+105*i,225-170*i],[1,0,-9,-4,27,-36,-23]]),rootof([[2,2*i,-12+2*i,-10-12*i,18-22*i,-66+14*i],[1,0,-9,-4,27,-36,-23]]),rootof([[-2*i,2,20*i,-36+4*i,-16-42*i,90+68*i],[1,0,-9,-4,27,-36,-23]])],[rootof([[-4,-1,40,26,-76,91],[1,0,-9,-4,27,-36,-23]]),102,rootof([[i,1,-10*i,-18-2*i,-8+21*i,45-34*i],[1,0,-9,-4,27,-36,-23]]),48+192*i,rootof([[-i,1,10*i,-18+2*i,-8-21*i,45+34*i],[1,0,-9,-4,27,-36,-23]]),12-48*i]],[[rootof([[-4,-1,40,26,-76,91],[1,0,-9,-4,27,-36,-23]])/102,1,0,0,0,0],[0,rootof([[-4,-1,40,26,-76,91],[1,0,-9,-4,27,-36,-23]])/102,0,0,0,0],[0,0,rootof([[48+12*i,12-48*i,-480-120*i,-312+840*i,912+636*i,-1092-2568*i],[1,0,-9,-4,27,-36,-23]])/2448,1,0,0],[0,0,0,rootof([[48+12*i,12-48*i,-480-120*i,-312+840*i,912+636*i,-1092-2568*i],[1,0,-9,-4,27,-36,-23]])/2448,0,0],[0,0,0,0,rootof([[48-12*i,12+48*i,-480+120*i,-312-840*i,912-636*i,-1092+2568*i],[1,0,-9,-4,27,-36,-23]])/2448,1],[0,0,0,0,0,rootof([[48-12*i,12+48*i,-480+120*i,-312-840*i,912-636*i,-1092+2568*i],[1,0,-9,-4,27,-36,-23]])/2448]],
  [[0,0,-2],[1,0,0],[0,1,0]],
  [[rootof([[-2*i,2,2+12*i,-12+10*i,-22-18*i,14+66*i],[1,0,-9,-4,27,-36,-23]]),rootof([[-2,8,20,-38,-106,122],[1,0,-9,-4,27,-36,-23]]),rootof([[-2,2*i,12+2*i,10-12*i,-18-22*i,66+14*i],[1,0,-9,-4,27,-36,-23]])],[rootof([[1,i,-10,-2-18*i,21-8*i,-34+45*i],[1,0,-9,-4,27,-36,-23]]),rootof([[4,1,-40,-26,76,-91],[1,0,-9,-4,27,-36,-23]]),rootof([[i,1,-10*i,-18-2*i,-8+21*i,45-34*i],[1,0,-9,-4,27,-36,-23]])],[-48-12*i,102,-12-48*i]],[[rootof([[-48+12*i,-12-48*i,480-120*i,312+840*i,-912+636*i,1092-2568*i],[1,0,-9,-4,27,-36,-23]])/2448,0,0],[0,rootof([[4,1,-40,-26,76,-91],[1,0,-9,-4,27,-36,-23]])/102,0],[0,0,rootof([[-48-12*i,-12+48*i,480+120*i,312-840*i,-912-636*i,1092+2568*i],[1,0,-9,-4,27,-36,-23]])/2448]],
  (x^2+2)/3,
  (a^2+2)/3,
  5,
  matrix[[-8.1,-2.1,6.9,-9.1,2.9],[-5.1,-2.1,9.9,9.9,2.9],[-2.1,8.9,7.9,-7.1,6.9],[0.9,-3.1,7.9,-9.1,0.9],[0.9,-7.1,-1.1,2.9,8.9]],
  matrix[[-8.1-X,-2.1,6.9,-9.1,2.9],[-5.1,-2.1-X,9.9,9.9,2.9],[-2.1,8.9,7.9-X,-7.1,6.9],[0.9,-3.1,7.9,-9.1-X,0.9],[0.9,-7.1,-1.1,2.9,8.9-X]],
  -1.00000000005*X^5-2.49999999984*X^4+110.5*X^3+1240.4*X^2-11443.7*X-228845.7,
  (x+(1-i)/sqrt(2))*(x+(1+i)/sqrt(2))*(x+(-1-i)/sqrt(2))*(x+(-1+i)/sqrt(2)),
  (x+(1-i)/sqrt(2))*(x+(1+i)/sqrt(2))*(x+(-1-i)/sqrt(2))*(x+(-1+i)/sqrt(2)),
  [[1,2],[3,4]],
  [[1.0,2.0],[3.0,4.0]],
  [[-2.0,1.0],[1.5,-0.5]],
  GF(3,u^3+2*u+1,[u,F],undef),
  F(u),
  ((1 % 3)*x-1 % 3)*(x+F(1))*(x^2+F(1)),
  ((1 % 3)*x+F(u))*(x+F(u+1))*((1 % 3)*x+F(u-1)),
  GF(7,a^7+3*a^6+a^5+a^4+3*a^3+5*a^2+4*a+4,[a,G],undef),
  G(a),
  (x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2+1))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2+2))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2+3))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2-1))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2-2))*(x+G(-2*a^6-a^5+3*a^4+3*a^3+3*a^2-3)),
  GF(7,a^7+a^6-3*a^5+2*a^4+a^2-2*a+2,[a,G],undef),
  G(a),
  (x+G(-3*a^4-a^3+3*a^2-3*a))*(x+G(-3*a^4-a^3+3*a^2-3*a+1))*(x+G(-3*a^4-a^3+3*a^2-3*a+2))*(x+G(-3*a^4-a^3+3*a^2-3*a+3))*(x+G(-3*a^4-a^3+3*a^2-3*a-1))*(x+G(-3*a^4-a^3+3*a^2-3*a-2))*(x+G(-3*a^4-a^3+3*a^2-3*a-3)),
  [[1,2,3],[-1,0,1],[0,1,1]],
  [[-1,0,1],[1,1,0],[1,-1,0]],[[0,1,0],[0,-1,1],[1,0,-3]],[[1,0,0],[-1/2,1,0],[-1/2,-1/3,1]],[[-1,0,1],[1/2,1,1/2],[2/3,-2/3,2/3]],
  (T*u^2+(-4*sqrt(3)+7)*T+(-sqrt(3)+2)*u^2-sqrt(3)+2)*(T*u^2+(4*sqrt(3)+7)*T+(-sqrt(3)-2)*u^2-sqrt(3)-2)