Blame view

Giac_maj/epsilon-giac/python/src/py/obj.h 38.5 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
  /*
   * This file is part of the Micro Python project, http://micropython.org/
   *
   * The MIT License (MIT)
   *
   * Copyright (c) 2013, 2014 Damien P. George
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  #ifndef MICROPY_INCLUDED_PY_OBJ_H
  #define MICROPY_INCLUDED_PY_OBJ_H
  
  #include "py/mpconfig.h"
  #include "py/misc.h"
  #include "py/qstr.h"
  #include "py/mpprint.h"
  
  // This is the definition of the opaque MicroPython object type.
  // All concrete objects have an encoding within this type and the
  // particular encoding is specified by MICROPY_OBJ_REPR.
  #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
  typedef uint64_t mp_obj_t;
  typedef uint64_t mp_const_obj_t;
  #else
  typedef void *mp_obj_t;
  typedef const void *mp_const_obj_t;
  #endif
  
  // This mp_obj_type_t struct is a concrete MicroPython object which holds info
  // about a type.  See below for actual definition of the struct.
  typedef struct _mp_obj_type_t mp_obj_type_t;
  
  // Anything that wants to be a concrete MicroPython object must have mp_obj_base_t
  // as its first member (small ints, qstr objs and inline floats are not concrete).
  struct _mp_obj_base_t {
      const mp_obj_type_t *type MICROPY_OBJ_BASE_ALIGNMENT;
  };
  typedef struct _mp_obj_base_t mp_obj_base_t;
  
  // These fake objects are used to indicate certain things in arguments or return
  // values, and should only be used when explicitly allowed.
  //
  //  - MP_OBJ_NULL : used to indicate the absence of an object, or unsupported operation.
  //  - MP_OBJ_STOP_ITERATION : used instead of throwing a StopIteration, for efficiency.
  //  - MP_OBJ_SENTINEL : used for various internal purposes where one needs
  //    an object which is unique from all other objects, including MP_OBJ_NULL.
  //
  // For debugging purposes they are all different.  For non-debug mode, we alias
  // as many as we can to MP_OBJ_NULL because it's cheaper to load/compare 0.
  
  #ifdef NDEBUG
  #define MP_OBJ_NULL             (MP_OBJ_FROM_PTR((void*)0))
  #define MP_OBJ_STOP_ITERATION   (MP_OBJ_FROM_PTR((void*)0))
  #define MP_OBJ_SENTINEL         (MP_OBJ_FROM_PTR((void*)4))
  #else
  #define MP_OBJ_NULL             (MP_OBJ_FROM_PTR((void*)0))
  #define MP_OBJ_STOP_ITERATION   (MP_OBJ_FROM_PTR((void*)4))
  #define MP_OBJ_SENTINEL         (MP_OBJ_FROM_PTR((void*)8))
  #endif
  
  // These macros/inline functions operate on objects and depend on the
  // particular object representation.  They are used to query, pack and
  // unpack small ints, qstrs and full object pointers.
  
  #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_A
  
  static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 1) != 0); }
  #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
  #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
  
  static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 3) == 2); }
  #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 2)
  #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 2) | 2))
  
  #if MICROPY_PY_BUILTINS_FLOAT
  #define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
  #define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
  extern const struct _mp_obj_float_t mp_const_float_e_obj;
  extern const struct _mp_obj_float_t mp_const_float_pi_obj;
  
  #define mp_obj_is_float(o) MP_OBJ_IS_TYPE((o), &mp_type_float)
  mp_float_t mp_obj_float_get(mp_obj_t self_in);
  mp_obj_t mp_obj_new_float(mp_float_t value);
  #endif
  
  static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 3) == 0); }
  
  #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_B
  
  static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 3) == 1); }
  #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 2)
  #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 2) | 1))
  
  static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 3) == 3); }
  #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 2)
  #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 2) | 3))
  
  #if MICROPY_PY_BUILTINS_FLOAT
  #define mp_const_float_e MP_ROM_PTR(&mp_const_float_e_obj)
  #define mp_const_float_pi MP_ROM_PTR(&mp_const_float_pi_obj)
  extern const struct _mp_obj_float_t mp_const_float_e_obj;
  extern const struct _mp_obj_float_t mp_const_float_pi_obj;
  
  #define mp_obj_is_float(o) MP_OBJ_IS_TYPE((o), &mp_type_float)
  mp_float_t mp_obj_float_get(mp_obj_t self_in);
  mp_obj_t mp_obj_new_float(mp_float_t value);
  #endif
  
  static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 1) == 0); }
  
  #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
  
  static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 1) != 0); }
  #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
  #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)((((mp_uint_t)(small_int)) << 1) | 1))
  
  #define mp_const_float_e MP_ROM_PTR((mp_obj_t)(((0x402df854 & ~3) | 2) + 0x80800000))
  #define mp_const_float_pi MP_ROM_PTR((mp_obj_t)(((0x40490fdb & ~3) | 2) + 0x80800000))
  
  static inline bool mp_obj_is_float(mp_const_obj_t o)
      { return (((mp_uint_t)(o)) & 3) == 2 && (((mp_uint_t)(o)) & 0xff800007) != 0x00000006; }
  static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) {
      union {
          mp_float_t f;
          mp_uint_t u;
      } num = {.u = ((mp_uint_t)o - 0x80800000) & ~3};
      return num.f;
  }
  static inline mp_obj_t mp_obj_new_float(mp_float_t f) {
      union {
          mp_float_t f;
          mp_uint_t u;
      } num = {.f = f};
      return (mp_obj_t)(((num.u & ~0x3) | 2) + 0x80800000);
  }
  
  static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o)
      { return (((mp_uint_t)(o)) & 0xff800007) == 0x00000006; }
  #define MP_OBJ_QSTR_VALUE(o) (((mp_uint_t)(o)) >> 3)
  #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 3) | 0x00000006))
  
  static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 3) == 0); }
  
  #elif MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
  
  static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 0xffff000000000000) == 0x0001000000000000); }
  #define MP_OBJ_SMALL_INT_VALUE(o) (((intptr_t)(o)) >> 1)
  #define MP_OBJ_NEW_SMALL_INT(small_int) ((mp_obj_t)(((uintptr_t)(small_int)) << 1) | 0x0001000000000001)
  
  static inline bool MP_OBJ_IS_QSTR(mp_const_obj_t o)
      { return ((((mp_int_t)(o)) & 0xffff000000000000) == 0x0002000000000000); }
  #define MP_OBJ_QSTR_VALUE(o) ((((uint32_t)(o)) >> 1) & 0xffffffff)
  #define MP_OBJ_NEW_QSTR(qst) ((mp_obj_t)((((mp_uint_t)(qst)) << 1) | 0x0002000000000001))
  
  #if MICROPY_PY_BUILTINS_FLOAT
  #define mp_const_float_e {((mp_obj_t)((uint64_t)0x4005bf0a8b125769 + 0x8004000000000000))}
  #define mp_const_float_pi {((mp_obj_t)((uint64_t)0x400921fb54442d18 + 0x8004000000000000))}
  
  static inline bool mp_obj_is_float(mp_const_obj_t o) {
      return ((uint64_t)(o) & 0xfffc000000000000) != 0;
  }
  static inline mp_float_t mp_obj_float_get(mp_const_obj_t o) {
      union {
          mp_float_t f;
          uint64_t r;
      } num = {.r = o - 0x8004000000000000};
      return num.f;
  }
  static inline mp_obj_t mp_obj_new_float(mp_float_t f) {
      union {
          mp_float_t f;
          uint64_t r;
      } num = {.f = f};
      return num.r + 0x8004000000000000;
  }
  #endif
  
  static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o)
      { return ((((uint64_t)(o)) & 0xffff000000000000) == 0x0000000000000000); }
  #define MP_OBJ_TO_PTR(o) ((void*)(uintptr_t)(o))
  #define MP_OBJ_FROM_PTR(p) ((mp_obj_t)((uintptr_t)(p)))
  
  // rom object storage needs special handling to widen 32-bit pointer to 64-bits
  typedef union _mp_rom_obj_t { uint64_t u64; struct { const void *lo, *hi; } u32; } mp_rom_obj_t;
  #define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
  #define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
  #if MP_ENDIANNESS_LITTLE
  #define MP_ROM_PTR(p) {.u32 = {.lo = (p), .hi = NULL}}
  #else
  #define MP_ROM_PTR(p) {.u32 = {.lo = NULL, .hi = (p)}}
  #endif
  
  #endif
  
  // Macros to convert between mp_obj_t and concrete object types.
  // These are identity operations in MicroPython, but ability to override
  // these operations are provided to experiment with other methods of
  // object representation and memory management.
  
  // Cast mp_obj_t to object pointer
  #ifndef MP_OBJ_TO_PTR
  #define MP_OBJ_TO_PTR(o) ((void*)o)
  #endif
  
  // Cast object pointer to mp_obj_t
  #ifndef MP_OBJ_FROM_PTR
  #define MP_OBJ_FROM_PTR(p) ((mp_obj_t)p)
  #endif
  
  // Macros to create objects that are stored in ROM.
  
  #ifndef MP_ROM_INT
  typedef mp_const_obj_t mp_rom_obj_t;
  #define MP_ROM_INT(i) MP_OBJ_NEW_SMALL_INT(i)
  #define MP_ROM_QSTR(q) MP_OBJ_NEW_QSTR(q)
  #define MP_ROM_PTR(p) (p)
  /* for testing
  typedef struct _mp_rom_obj_t { mp_const_obj_t o; } mp_rom_obj_t;
  #define MP_ROM_INT(i) {MP_OBJ_NEW_SMALL_INT(i)}
  #define MP_ROM_QSTR(q) {MP_OBJ_NEW_QSTR(q)}
  #define MP_ROM_PTR(p) {.o = p}
  */
  #endif
  
  // The macros below are derived from the ones above and are used to
  // check for more specific object types.
  
  #define MP_OBJ_IS_TYPE(o, t) (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)MP_OBJ_TO_PTR(o))->type == (t))) // this does not work for checking int, str or fun; use below macros for that
  #define MP_OBJ_IS_INT(o) (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int))
  #define MP_OBJ_IS_STR(o) (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str))
  #define MP_OBJ_IS_STR_OR_BYTES(o) (MP_OBJ_IS_QSTR(o) || (MP_OBJ_IS_OBJ(o) && ((mp_obj_base_t*)MP_OBJ_TO_PTR(o))->type->binary_op == mp_obj_str_binary_op))
  #define MP_OBJ_IS_FUN(o) (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)MP_OBJ_TO_PTR(o))->type->name == MP_QSTR_function))
  
  // Note: inline functions sometimes use much more code space than the
  // equivalent macros, depending on the compiler.
  //static inline bool MP_OBJ_IS_TYPE(mp_const_obj_t o, const mp_obj_type_t *t) { return (MP_OBJ_IS_OBJ(o) && (((mp_obj_base_t*)(o))->type == (t))); } // this does not work for checking a string, use below macro for that
  //static inline bool MP_OBJ_IS_INT(mp_const_obj_t o) { return (MP_OBJ_IS_SMALL_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_int)); } // returns true if o is a small int or long int
  // Need to forward declare these for the inline function to compile.
  extern const mp_obj_type_t mp_type_int;
  extern const mp_obj_type_t mp_type_bool;
  static inline bool mp_obj_is_integer(mp_const_obj_t o) { return MP_OBJ_IS_INT(o) || MP_OBJ_IS_TYPE(o, &mp_type_bool); } // returns true if o is bool, small int or long int
  //static inline bool MP_OBJ_IS_STR(mp_const_obj_t o) { return (MP_OBJ_IS_QSTR(o) || MP_OBJ_IS_TYPE(o, &mp_type_str)); }
  
  
  // These macros are used to declare and define constant function objects
  // You can put "static" in front of the definitions to make them local
  
  #define MP_DECLARE_CONST_FUN_OBJ_0(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_1(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_2(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_3(obj_name) extern const mp_obj_fun_builtin_fixed_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_VAR(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
  #define MP_DECLARE_CONST_FUN_OBJ_KW(obj_name) extern const mp_obj_fun_builtin_var_t obj_name
  
  #define MP_DEFINE_CONST_FUN_OBJ_0(obj_name, fun_name) \
      const mp_obj_fun_builtin_fixed_t obj_name = \
          {{&mp_type_fun_builtin_0}, .fun._0 = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_1(obj_name, fun_name) \
      const mp_obj_fun_builtin_fixed_t obj_name = \
          {{&mp_type_fun_builtin_1}, .fun._1 = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_2(obj_name, fun_name) \
      const mp_obj_fun_builtin_fixed_t obj_name = \
          {{&mp_type_fun_builtin_2}, .fun._2 = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_3(obj_name, fun_name) \
      const mp_obj_fun_builtin_fixed_t obj_name = \
          {{&mp_type_fun_builtin_3}, .fun._3 = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_VAR(obj_name, n_args_min, fun_name) \
      const mp_obj_fun_builtin_var_t obj_name = \
          {{&mp_type_fun_builtin_var}, false, n_args_min, MP_OBJ_FUN_ARGS_MAX, .fun.var = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(obj_name, n_args_min, n_args_max, fun_name) \
      const mp_obj_fun_builtin_var_t obj_name = \
          {{&mp_type_fun_builtin_var}, false, n_args_min, n_args_max, .fun.var = fun_name}
  #define MP_DEFINE_CONST_FUN_OBJ_KW(obj_name, n_args_min, fun_name) \
      const mp_obj_fun_builtin_var_t obj_name = \
          {{&mp_type_fun_builtin_var}, true, n_args_min, MP_OBJ_FUN_ARGS_MAX, .fun.kw = fun_name}
  
  // These macros are used to define constant map/dict objects
  // You can put "static" in front of the definition to make it local
  
  #define MP_DEFINE_CONST_MAP(map_name, table_name) \
      const mp_map_t map_name = { \
          .all_keys_are_qstrs = 1, \
          .is_fixed = 1, \
          .is_ordered = 1, \
          .used = MP_ARRAY_SIZE(table_name), \
          .alloc = MP_ARRAY_SIZE(table_name), \
          .table = (mp_map_elem_t*)(mp_rom_map_elem_t*)table_name, \
      }
  
  #define MP_DEFINE_CONST_DICT(dict_name, table_name) \
      const mp_obj_dict_t dict_name = { \
          .base = {&mp_type_dict}, \
          .map = { \
              .all_keys_are_qstrs = 1, \
              .is_fixed = 1, \
              .is_ordered = 1, \
              .used = MP_ARRAY_SIZE(table_name), \
              .alloc = MP_ARRAY_SIZE(table_name), \
              .table = (mp_map_elem_t*)(mp_rom_map_elem_t*)table_name, \
          }, \
      }
  
  // These macros are used to declare and define constant staticmethond and classmethod objects
  // You can put "static" in front of the definitions to make them local
  
  #define MP_DECLARE_CONST_STATICMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
  #define MP_DECLARE_CONST_CLASSMETHOD_OBJ(obj_name) extern const mp_rom_obj_static_class_method_t obj_name
  
  #define MP_DEFINE_CONST_STATICMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_staticmethod}, fun_name}
  #define MP_DEFINE_CONST_CLASSMETHOD_OBJ(obj_name, fun_name) const mp_rom_obj_static_class_method_t obj_name = {{&mp_type_classmethod}, fun_name}
  
  // Underlying map/hash table implementation (not dict object or map function)
  
  typedef struct _mp_map_elem_t {
      mp_obj_t key;
      mp_obj_t value;
  } mp_map_elem_t;
  
  typedef struct _mp_rom_map_elem_t {
      mp_rom_obj_t key;
      mp_rom_obj_t value;
  } mp_rom_map_elem_t;
  
  // TODO maybe have a truncated mp_map_t for fixed tables, since alloc=used
  // put alloc last in the structure, so the truncated version does not need it
  // this would save 1 ROM word for all ROM objects that have a locals_dict
  // would also need a trucated dict structure
  
  typedef struct _mp_map_t {
      size_t all_keys_are_qstrs : 1;
      size_t is_fixed : 1;    // a fixed array that can't be modified; must also be ordered
      size_t is_ordered : 1;  // an ordered array
      size_t used : (8 * sizeof(size_t) - 3);
      size_t alloc;
      mp_map_elem_t *table;
  } mp_map_t;
  
  // mp_set_lookup requires these constants to have the values they do
  typedef enum _mp_map_lookup_kind_t {
      MP_MAP_LOOKUP = 0,
      MP_MAP_LOOKUP_ADD_IF_NOT_FOUND = 1,
      MP_MAP_LOOKUP_REMOVE_IF_FOUND = 2,
      MP_MAP_LOOKUP_ADD_IF_NOT_FOUND_OR_REMOVE_IF_FOUND = 3, // only valid for mp_set_lookup
  } mp_map_lookup_kind_t;
  
  extern const mp_map_t mp_const_empty_map;
  
  static inline bool MP_MAP_SLOT_IS_FILLED(const mp_map_t *map, size_t pos) { return ((map)->table[pos].key != MP_OBJ_NULL && (map)->table[pos].key != MP_OBJ_SENTINEL); }
  
  void mp_map_init(mp_map_t *map, size_t n);
  void mp_map_init_fixed_table(mp_map_t *map, size_t n, const mp_obj_t *table);
  mp_map_t *mp_map_new(size_t n);
  void mp_map_deinit(mp_map_t *map);
  void mp_map_free(mp_map_t *map);
  mp_map_elem_t *mp_map_lookup(mp_map_t *map, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
  void mp_map_clear(mp_map_t *map);
  void mp_map_dump(mp_map_t *map);
  
  // Underlying set implementation (not set object)
  
  typedef struct _mp_set_t {
      size_t alloc;
      size_t used;
      mp_obj_t *table;
  } mp_set_t;
  
  static inline bool MP_SET_SLOT_IS_FILLED(const mp_set_t *set, size_t pos) { return ((set)->table[pos] != MP_OBJ_NULL && (set)->table[pos] != MP_OBJ_SENTINEL); }
  
  void mp_set_init(mp_set_t *set, size_t n);
  mp_obj_t mp_set_lookup(mp_set_t *set, mp_obj_t index, mp_map_lookup_kind_t lookup_kind);
  mp_obj_t mp_set_remove_first(mp_set_t *set);
  void mp_set_clear(mp_set_t *set);
  
  // Type definitions for methods
  
  typedef mp_obj_t (*mp_fun_0_t)(void);
  typedef mp_obj_t (*mp_fun_1_t)(mp_obj_t);
  typedef mp_obj_t (*mp_fun_2_t)(mp_obj_t, mp_obj_t);
  typedef mp_obj_t (*mp_fun_3_t)(mp_obj_t, mp_obj_t, mp_obj_t);
  typedef mp_obj_t (*mp_fun_var_t)(size_t n, const mp_obj_t *);
  // mp_fun_kw_t takes mp_map_t* (and not const mp_map_t*) to ease passing
  // this arg to mp_map_lookup().
  typedef mp_obj_t (*mp_fun_kw_t)(size_t n, const mp_obj_t *, mp_map_t *);
  
  typedef enum {
      PRINT_STR = 0,
      PRINT_REPR = 1,
      PRINT_EXC = 2, // Special format for printing exception in unhandled exception message
      PRINT_JSON = 3,
      PRINT_RAW = 4, // Special format for printing bytes as an undercorated string
      PRINT_EXC_SUBCLASS = 0x80, // Internal flag for printing exception subclasses
  } mp_print_kind_t;
  
  typedef struct _mp_obj_iter_buf_t {
      mp_obj_base_t base;
      mp_obj_t buf[3];
  } mp_obj_iter_buf_t;
  
  // The number of slots that an mp_obj_iter_buf_t needs on the Python value stack.
  // It's rounded up in case mp_obj_base_t is smaller than mp_obj_t (eg for OBJ_REPR_D).
  #define MP_OBJ_ITER_BUF_NSLOTS ((sizeof(mp_obj_iter_buf_t) + sizeof(mp_obj_t) - 1) / sizeof(mp_obj_t))
  
  typedef void (*mp_print_fun_t)(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind);
  typedef mp_obj_t (*mp_make_new_fun_t)(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args);
  typedef mp_obj_t (*mp_call_fun_t)(mp_obj_t fun, size_t n_args, size_t n_kw, const mp_obj_t *args);
  typedef mp_obj_t (*mp_unary_op_fun_t)(mp_uint_t op, mp_obj_t);
  typedef mp_obj_t (*mp_binary_op_fun_t)(mp_uint_t op, mp_obj_t, mp_obj_t);
  typedef void (*mp_attr_fun_t)(mp_obj_t self_in, qstr attr, mp_obj_t *dest);
  typedef mp_obj_t (*mp_subscr_fun_t)(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
  typedef mp_obj_t (*mp_getiter_fun_t)(mp_obj_t self_in, mp_obj_iter_buf_t *iter_buf);
  
  // Buffer protocol
  typedef struct _mp_buffer_info_t {
      // if we'd bother to support various versions of structure
      // (with different number of fields), we can distinguish
      // them with ver = sizeof(struct). Cons: overkill for *micro*?
      //int ver; // ?
  
      void *buf;      // can be NULL if len == 0
      size_t len;     // in bytes
      int typecode;   // as per binary.h
  
      // Rationale: to load arbitrary-sized sprites directly to LCD
      // Cons: a bit adhoc usecase
      // int stride;
  } mp_buffer_info_t;
  #define MP_BUFFER_READ  (1)
  #define MP_BUFFER_WRITE (2)
  #define MP_BUFFER_RW (MP_BUFFER_READ | MP_BUFFER_WRITE)
  typedef struct _mp_buffer_p_t {
      mp_int_t (*get_buffer)(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
  } mp_buffer_p_t;
  bool mp_get_buffer(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
  void mp_get_buffer_raise(mp_obj_t obj, mp_buffer_info_t *bufinfo, mp_uint_t flags);
  
  // Stream protocol
  typedef struct _mp_stream_p_t {
      // On error, functions should return MP_STREAM_ERROR and fill in *errcode (values
      // are implementation-dependent, but will be exposed to user, e.g. via exception).
      mp_uint_t (*read)(mp_obj_t obj, void *buf, mp_uint_t size, int *errcode);
      mp_uint_t (*write)(mp_obj_t obj, const void *buf, mp_uint_t size, int *errcode);
      mp_uint_t (*ioctl)(mp_obj_t obj, mp_uint_t request, uintptr_t arg, int *errcode);
      mp_uint_t is_text : 1; // default is bytes, set this for text stream
  } mp_stream_p_t;
  
  struct _mp_obj_type_t {
      // A type is an object so must start with this entry, which points to mp_type_type.
      mp_obj_base_t base;
  
      // The name of this type.
      qstr name;
  
      // Corresponds to __repr__ and __str__ special methods.
      mp_print_fun_t print;
  
      // Corresponds to __new__ and __init__ special methods, to make an instance of the type.
      mp_make_new_fun_t make_new;
  
      // Corresponds to __call__ special method, ie T(...).
      mp_call_fun_t call;
  
      // Implements unary and binary operations.
      // Can return MP_OBJ_NULL if the operation is not supported.
      mp_unary_op_fun_t unary_op;
      mp_binary_op_fun_t binary_op;
  
      // Implements load, store and delete attribute.
      //
      // dest[0] = MP_OBJ_NULL means load
      //  return: for fail, do nothing
      //          for attr, dest[0] = value
      //          for method, dest[0] = method, dest[1] = self
      //
      // dest[0,1] = {MP_OBJ_SENTINEL, MP_OBJ_NULL} means delete
      // dest[0,1] = {MP_OBJ_SENTINEL, object} means store
      //  return: for fail, do nothing
      //          for success set dest[0] = MP_OBJ_NULL
      mp_attr_fun_t attr;
  
      // Implements load, store and delete subscripting:
      //  - value = MP_OBJ_SENTINEL means load
      //  - value = MP_OBJ_NULL means delete
      //  - all other values mean store the value
      // Can return MP_OBJ_NULL if operation not supported.
      mp_subscr_fun_t subscr;
  
      // Corresponds to __iter__ special method.
      // Can use the given mp_obj_iter_buf_t to store iterator object,
      // otherwise can return a pointer to an object on the heap.
      mp_getiter_fun_t getiter;
  
      // Corresponds to __next__ special method.  May return MP_OBJ_STOP_ITERATION
      // as an optimisation instead of raising StopIteration() with no args.
      mp_fun_1_t iternext;
  
      // Implements the buffer protocol if supported by this type.
      mp_buffer_p_t buffer_p;
  
      // One of disjoint protocols (interfaces), like mp_stream_p_t, etc.
      const void *protocol;
  
      // A pointer to the parents of this type:
      //  - 0 parents: pointer is NULL (object is implicitly the single parent)
      //  - 1 parent: a pointer to the type of that parent
      //  - 2 or more parents: pointer to a tuple object containing the parent types
      const void *parent;
  
      // A dict mapping qstrs to objects local methods/constants/etc.
      struct _mp_obj_dict_t *locals_dict;
  };
  
  // Constant types, globally accessible
  extern const mp_obj_type_t mp_type_type;
  extern const mp_obj_type_t mp_type_object;
  extern const mp_obj_type_t mp_type_NoneType;
  extern const mp_obj_type_t mp_type_bool;
  extern const mp_obj_type_t mp_type_int;
  extern const mp_obj_type_t mp_type_str;
  extern const mp_obj_type_t mp_type_bytes;
  extern const mp_obj_type_t mp_type_bytearray;
  extern const mp_obj_type_t mp_type_memoryview;
  extern const mp_obj_type_t mp_type_float;
  extern const mp_obj_type_t mp_type_complex;
  extern const mp_obj_type_t mp_type_tuple;
  extern const mp_obj_type_t mp_type_list;
  extern const mp_obj_type_t mp_type_map; // map (the python builtin, not the dict implementation detail)
  extern const mp_obj_type_t mp_type_enumerate;
  extern const mp_obj_type_t mp_type_filter;
  extern const mp_obj_type_t mp_type_dict;
  extern const mp_obj_type_t mp_type_ordereddict;
  extern const mp_obj_type_t mp_type_range;
  extern const mp_obj_type_t mp_type_set;
  extern const mp_obj_type_t mp_type_frozenset;
  extern const mp_obj_type_t mp_type_slice;
  extern const mp_obj_type_t mp_type_zip;
  extern const mp_obj_type_t mp_type_array;
  extern const mp_obj_type_t mp_type_super;
  extern const mp_obj_type_t mp_type_gen_instance;
  extern const mp_obj_type_t mp_type_fun_builtin_0;
  extern const mp_obj_type_t mp_type_fun_builtin_1;
  extern const mp_obj_type_t mp_type_fun_builtin_2;
  extern const mp_obj_type_t mp_type_fun_builtin_3;
  extern const mp_obj_type_t mp_type_fun_builtin_var;
  extern const mp_obj_type_t mp_type_fun_bc;
  extern const mp_obj_type_t mp_type_module;
  extern const mp_obj_type_t mp_type_staticmethod;
  extern const mp_obj_type_t mp_type_classmethod;
  extern const mp_obj_type_t mp_type_property;
  extern const mp_obj_type_t mp_type_stringio;
  extern const mp_obj_type_t mp_type_bytesio;
  extern const mp_obj_type_t mp_type_reversed;
  extern const mp_obj_type_t mp_type_polymorph_iter;
  
  // Exceptions
  extern const mp_obj_type_t mp_type_BaseException;
  extern const mp_obj_type_t mp_type_ArithmeticError;
  extern const mp_obj_type_t mp_type_AssertionError;
  extern const mp_obj_type_t mp_type_AttributeError;
  extern const mp_obj_type_t mp_type_EOFError;
  extern const mp_obj_type_t mp_type_Exception;
  extern const mp_obj_type_t mp_type_GeneratorExit;
  extern const mp_obj_type_t mp_type_ImportError;
  extern const mp_obj_type_t mp_type_IndentationError;
  extern const mp_obj_type_t mp_type_IndexError;
  extern const mp_obj_type_t mp_type_KeyboardInterrupt;
  extern const mp_obj_type_t mp_type_KeyError;
  extern const mp_obj_type_t mp_type_LookupError;
  extern const mp_obj_type_t mp_type_MemoryError;
  extern const mp_obj_type_t mp_type_NameError;
  extern const mp_obj_type_t mp_type_NotImplementedError;
  extern const mp_obj_type_t mp_type_OSError;
  extern const mp_obj_type_t mp_type_TimeoutError;
  extern const mp_obj_type_t mp_type_OverflowError;
  extern const mp_obj_type_t mp_type_RuntimeError;
  extern const mp_obj_type_t mp_type_StopAsyncIteration;
  extern const mp_obj_type_t mp_type_StopIteration;
  extern const mp_obj_type_t mp_type_SyntaxError;
  extern const mp_obj_type_t mp_type_SystemExit;
  extern const mp_obj_type_t mp_type_TypeError;
  extern const mp_obj_type_t mp_type_UnicodeError;
  extern const mp_obj_type_t mp_type_ValueError;
  extern const mp_obj_type_t mp_type_ViperTypeError;
  extern const mp_obj_type_t mp_type_ZeroDivisionError;
  
  // Constant objects, globally accessible
  // The macros are for convenience only
  #define mp_const_none (MP_OBJ_FROM_PTR(&mp_const_none_obj))
  #define mp_const_false (MP_OBJ_FROM_PTR(&mp_const_false_obj))
  #define mp_const_true (MP_OBJ_FROM_PTR(&mp_const_true_obj))
  #define mp_const_empty_bytes (MP_OBJ_FROM_PTR(&mp_const_empty_bytes_obj))
  #define mp_const_empty_tuple (MP_OBJ_FROM_PTR(&mp_const_empty_tuple_obj))
  extern const struct _mp_obj_none_t mp_const_none_obj;
  extern const struct _mp_obj_bool_t mp_const_false_obj;
  extern const struct _mp_obj_bool_t mp_const_true_obj;
  extern const struct _mp_obj_str_t mp_const_empty_bytes_obj;
  extern const struct _mp_obj_tuple_t mp_const_empty_tuple_obj;
  extern const struct _mp_obj_singleton_t mp_const_ellipsis_obj;
  extern const struct _mp_obj_singleton_t mp_const_notimplemented_obj;
  extern const struct _mp_obj_exception_t mp_const_MemoryError_obj;
  extern const struct _mp_obj_exception_t mp_const_GeneratorExit_obj;
  
  // General API for objects
  
  mp_obj_t mp_obj_new_type(qstr name, mp_obj_t bases_tuple, mp_obj_t locals_dict);
  mp_obj_t mp_obj_new_none(void);
  static inline mp_obj_t mp_obj_new_bool(mp_int_t x) { return x ? mp_const_true : mp_const_false; }
  mp_obj_t mp_obj_new_cell(mp_obj_t obj);
  mp_obj_t mp_obj_new_int(mp_int_t value);
  mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value);
  mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base);
  mp_obj_t mp_obj_new_int_from_ll(long long val); // this must return a multi-precision integer object (or raise an overflow exception)
  mp_obj_t mp_obj_new_int_from_ull(unsigned long long val); // this must return a multi-precision integer object (or raise an overflow exception)
  mp_obj_t mp_obj_new_str(const char* data, size_t len, bool make_qstr_if_not_already);
  mp_obj_t mp_obj_new_str_from_vstr(const mp_obj_type_t *type, vstr_t *vstr);
  mp_obj_t mp_obj_new_bytes(const byte* data, size_t len);
  mp_obj_t mp_obj_new_bytearray(size_t n, void *items);
  mp_obj_t mp_obj_new_bytearray_by_ref(size_t n, void *items);
  #if MICROPY_PY_BUILTINS_FLOAT
  mp_obj_t mp_obj_new_int_from_float(mp_float_t val);
  mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag);
  #endif
  mp_obj_t mp_obj_new_exception(const mp_obj_type_t *exc_type);
  mp_obj_t mp_obj_new_exception_arg1(const mp_obj_type_t *exc_type, mp_obj_t arg);
  mp_obj_t mp_obj_new_exception_args(const mp_obj_type_t *exc_type, size_t n_args, const mp_obj_t *args);
  mp_obj_t mp_obj_new_exception_msg(const mp_obj_type_t *exc_type, const char *msg);
  mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...); // counts args by number of % symbols in fmt, excluding %%; can only handle void* sizes (ie no float/double!)
  mp_obj_t mp_obj_new_fun_bc(mp_obj_t def_args, mp_obj_t def_kw_args, const byte *code, const mp_uint_t *const_table);
  mp_obj_t mp_obj_new_fun_native(mp_obj_t def_args_in, mp_obj_t def_kw_args, const void *fun_data, const mp_uint_t *const_table);
  mp_obj_t mp_obj_new_fun_viper(size_t n_args, void *fun_data, mp_uint_t type_sig);
  mp_obj_t mp_obj_new_fun_asm(size_t n_args, void *fun_data, mp_uint_t type_sig);
  mp_obj_t mp_obj_new_gen_wrap(mp_obj_t fun);
  mp_obj_t mp_obj_new_closure(mp_obj_t fun, size_t n_closed, const mp_obj_t *closed);
  mp_obj_t mp_obj_new_tuple(size_t n, const mp_obj_t *items);
  mp_obj_t mp_obj_new_list(size_t n, mp_obj_t *items);
  mp_obj_t mp_obj_new_dict(size_t n_args);
  mp_obj_t mp_obj_new_set(size_t n_args, mp_obj_t *items);
  mp_obj_t mp_obj_new_slice(mp_obj_t start, mp_obj_t stop, mp_obj_t step);
  mp_obj_t mp_obj_new_bound_meth(mp_obj_t meth, mp_obj_t self);
  mp_obj_t mp_obj_new_getitem_iter(mp_obj_t *args, mp_obj_iter_buf_t *iter_buf);
  mp_obj_t mp_obj_new_module(qstr module_name);
  mp_obj_t mp_obj_new_memoryview(byte typecode, size_t nitems, void *items);
  
  mp_obj_type_t *mp_obj_get_type(mp_const_obj_t o_in);
  const char *mp_obj_get_type_str(mp_const_obj_t o_in);
  bool mp_obj_is_subclass_fast(mp_const_obj_t object, mp_const_obj_t classinfo); // arguments should be type objects
  mp_obj_t mp_instance_cast_to_native_base(mp_const_obj_t self_in, mp_const_obj_t native_type);
  
  void mp_obj_print_helper(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind);
  void mp_obj_print(mp_obj_t o, mp_print_kind_t kind);
  void mp_obj_print_exception(const mp_print_t *print, mp_obj_t exc);
  
  bool mp_obj_is_true(mp_obj_t arg);
  bool mp_obj_is_callable(mp_obj_t o_in);
  bool mp_obj_equal(mp_obj_t o1, mp_obj_t o2);
  
  mp_int_t mp_obj_get_int(mp_const_obj_t arg);
  mp_int_t mp_obj_get_int_truncated(mp_const_obj_t arg);
  bool mp_obj_get_int_maybe(mp_const_obj_t arg, mp_int_t *value);
  #if MICROPY_PY_BUILTINS_FLOAT
  mp_float_t mp_obj_get_float(mp_obj_t self_in);
  void mp_obj_get_complex(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
  #endif
  //qstr mp_obj_get_qstr(mp_obj_t arg);
  void mp_obj_get_array(mp_obj_t o, size_t *len, mp_obj_t **items); // *items may point inside a GC block
  void mp_obj_get_array_fixed_n(mp_obj_t o, size_t len, mp_obj_t **items); // *items may point inside a GC block
  size_t mp_get_index(const mp_obj_type_t *type, size_t len, mp_obj_t index, bool is_slice);
  mp_obj_t mp_obj_id(mp_obj_t o_in);
  mp_obj_t mp_obj_len(mp_obj_t o_in);
  mp_obj_t mp_obj_len_maybe(mp_obj_t o_in); // may return MP_OBJ_NULL
  mp_obj_t mp_obj_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t val);
  mp_obj_t mp_generic_unary_op(mp_uint_t op, mp_obj_t o_in);
  
  // cell
  mp_obj_t mp_obj_cell_get(mp_obj_t self_in);
  void mp_obj_cell_set(mp_obj_t self_in, mp_obj_t obj);
  
  // int
  // For long int, returns value truncated to mp_int_t
  mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in);
  // Will raise exception if value doesn't fit into mp_int_t
  mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in);
  
  // exception
  #define mp_obj_is_native_exception_instance(o) (mp_obj_get_type(o)->make_new == mp_obj_exception_make_new)
  bool mp_obj_is_exception_type(mp_obj_t self_in);
  bool mp_obj_is_exception_instance(mp_obj_t self_in);
  bool mp_obj_exception_match(mp_obj_t exc, mp_const_obj_t exc_type);
  void mp_obj_exception_clear_traceback(mp_obj_t self_in);
  void mp_obj_exception_add_traceback(mp_obj_t self_in, qstr file, size_t line, qstr block);
  void mp_obj_exception_get_traceback(mp_obj_t self_in, size_t *n, size_t **values);
  mp_obj_t mp_obj_exception_get_value(mp_obj_t self_in);
  mp_obj_t mp_obj_exception_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args);
  mp_obj_t mp_alloc_emergency_exception_buf(mp_obj_t size_in);
  void mp_init_emergency_exception_buf(void);
  
  // str
  bool mp_obj_str_equal(mp_obj_t s1, mp_obj_t s2);
  qstr mp_obj_str_get_qstr(mp_obj_t self_in); // use this if you will anyway convert the string to a qstr
  const char *mp_obj_str_get_str(mp_obj_t self_in); // use this only if you need the string to be null terminated
  const char *mp_obj_str_get_data(mp_obj_t self_in, size_t *len);
  mp_obj_t mp_obj_str_intern(mp_obj_t str);
  void mp_str_print_quoted(const mp_print_t *print, const byte *str_data, size_t str_len, bool is_bytes);
  
  #if MICROPY_PY_BUILTINS_FLOAT
  // float
  #if MICROPY_FLOAT_HIGH_QUALITY_HASH
  mp_int_t mp_float_hash(mp_float_t val);
  #else
  static inline mp_int_t mp_float_hash(mp_float_t val) { return (mp_int_t)val; }
  #endif
  mp_obj_t mp_obj_float_binary_op(mp_uint_t op, mp_float_t lhs_val, mp_obj_t rhs); // can return MP_OBJ_NULL if op not supported
  
  // complex
  void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag);
  mp_obj_t mp_obj_complex_binary_op(mp_uint_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in); // can return MP_OBJ_NULL if op not supported
  #else
  #define mp_obj_is_float(o) (false)
  #endif
  
  // tuple
  void mp_obj_tuple_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);
  void mp_obj_tuple_del(mp_obj_t self_in);
  mp_int_t mp_obj_tuple_hash(mp_obj_t self_in);
  
  // list
  struct _mp_obj_list_t;
  void mp_obj_list_init(struct _mp_obj_list_t *o, size_t n);
  mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
  mp_obj_t mp_obj_list_remove(mp_obj_t self_in, mp_obj_t value);
  void mp_obj_list_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);
  void mp_obj_list_set_len(mp_obj_t self_in, size_t len);
  void mp_obj_list_store(mp_obj_t self_in, mp_obj_t index, mp_obj_t value);
  mp_obj_t mp_obj_list_sort(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs);
  
  // dict
  typedef struct _mp_obj_dict_t {
      mp_obj_base_t base;
      mp_map_t map;
  } mp_obj_dict_t;
  void mp_obj_dict_init(mp_obj_dict_t *dict, size_t n_args);
  size_t mp_obj_dict_len(mp_obj_t self_in);
  mp_obj_t mp_obj_dict_get(mp_obj_t self_in, mp_obj_t index);
  mp_obj_t mp_obj_dict_store(mp_obj_t self_in, mp_obj_t key, mp_obj_t value);
  mp_obj_t mp_obj_dict_delete(mp_obj_t self_in, mp_obj_t key);
  mp_map_t *mp_obj_dict_get_map(mp_obj_t self_in);
  
  // set
  void mp_obj_set_store(mp_obj_t self_in, mp_obj_t item);
  
  // slice
  void mp_obj_slice_get(mp_obj_t self_in, mp_obj_t *start, mp_obj_t *stop, mp_obj_t *step);
  
  // functions
  
  typedef struct _mp_obj_fun_builtin_fixed_t {
      mp_obj_base_t base;
      union {
          mp_fun_0_t _0;
          mp_fun_1_t _1;
          mp_fun_2_t _2;
          mp_fun_3_t _3;
      } fun;
  } mp_obj_fun_builtin_fixed_t;
  
  #define MP_OBJ_FUN_ARGS_MAX (0xffff) // to set maximum value in n_args_max below
  typedef struct _mp_obj_fun_builtin_var_t {
      mp_obj_base_t base;
      bool is_kw : 1;
      mp_uint_t n_args_min : 15; // inclusive
      mp_uint_t n_args_max : 16; // inclusive
      union {
          mp_fun_var_t var;
          mp_fun_kw_t kw;
      } fun;
  } mp_obj_fun_builtin_var_t;
  
  qstr mp_obj_fun_get_name(mp_const_obj_t fun);
  qstr mp_obj_code_get_name(const byte *code_info);
  
  mp_obj_t mp_identity(mp_obj_t self);
  MP_DECLARE_CONST_FUN_OBJ_1(mp_identity_obj);
  mp_obj_t mp_identity_getiter(mp_obj_t self, mp_obj_iter_buf_t *iter_buf);
  
  // module
  typedef struct _mp_obj_module_t {
      mp_obj_base_t base;
      mp_obj_dict_t *globals;
  } mp_obj_module_t;
  mp_obj_dict_t *mp_obj_module_get_globals(mp_obj_t self_in);
  // check if given module object is a package
  bool mp_obj_is_package(mp_obj_t module);
  
  // staticmethod and classmethod types; defined here so we can make const versions
  // this structure is used for instances of both staticmethod and classmethod
  typedef struct _mp_obj_static_class_method_t {
      mp_obj_base_t base;
      mp_obj_t fun;
  } mp_obj_static_class_method_t;
  typedef struct _mp_rom_obj_static_class_method_t {
      mp_obj_base_t base;
      mp_rom_obj_t fun;
  } mp_rom_obj_static_class_method_t;
  
  // property
  const mp_obj_t *mp_obj_property_get(mp_obj_t self_in);
  
  // sequence helpers
  
  // slice indexes resolved to particular sequence
  typedef struct {
      mp_uint_t start;
      mp_uint_t stop;
      mp_int_t step;
  } mp_bound_slice_t;
  
  void mp_seq_multiply(const void *items, size_t item_sz, size_t len, size_t times, void *dest);
  #if MICROPY_PY_BUILTINS_SLICE
  bool mp_seq_get_fast_slice_indexes(mp_uint_t len, mp_obj_t slice, mp_bound_slice_t *indexes);
  #endif
  #define mp_seq_copy(dest, src, len, item_t) memcpy(dest, src, len * sizeof(item_t))
  #define mp_seq_cat(dest, src1, len1, src2, len2, item_t) { memcpy(dest, src1, (len1) * sizeof(item_t)); memcpy(dest + (len1), src2, (len2) * sizeof(item_t)); }
  bool mp_seq_cmp_bytes(mp_uint_t op, const byte *data1, size_t len1, const byte *data2, size_t len2);
  bool mp_seq_cmp_objs(mp_uint_t op, const mp_obj_t *items1, size_t len1, const mp_obj_t *items2, size_t len2);
  mp_obj_t mp_seq_index_obj(const mp_obj_t *items, size_t len, size_t n_args, const mp_obj_t *args);
  mp_obj_t mp_seq_count_obj(const mp_obj_t *items, size_t len, mp_obj_t value);
  mp_obj_t mp_seq_extract_slice(size_t len, const mp_obj_t *seq, mp_bound_slice_t *indexes);
  // Helper to clear stale pointers from allocated, but unused memory, to preclude GC problems
  #define mp_seq_clear(start, len, alloc_len, item_sz) memset((byte*)(start) + (len) * (item_sz), 0, ((alloc_len) - (len)) * (item_sz))
  #define mp_seq_replace_slice_no_grow(dest, dest_len, beg, end, slice, slice_len, item_sz) \
      /*printf("memcpy(%p, %p, %d)\n", dest + beg, slice, slice_len * (item_sz));*/ \
      memcpy(((char*)dest) + (beg) * (item_sz), slice, slice_len * (item_sz)); \
      /*printf("memmove(%p, %p, %d)\n", dest + (beg + slice_len), dest + end, (dest_len - end) * (item_sz));*/ \
      memmove(((char*)dest) + (beg + slice_len) * (item_sz), ((char*)dest) + (end) * (item_sz), (dest_len - end) * (item_sz));
  
  // Note: dest and slice regions may overlap
  #define mp_seq_replace_slice_grow_inplace(dest, dest_len, beg, end, slice, slice_len, len_adj, item_sz) \
      /*printf("memmove(%p, %p, %d)\n", dest + beg + len_adj, dest + beg, (dest_len - beg) * (item_sz));*/ \
      memmove(((char*)dest) + (beg + slice_len) * (item_sz), ((char*)dest) + (end) * (item_sz), ((dest_len) + (len_adj) - ((beg) + (slice_len))) * (item_sz)); \
      memmove(((char*)dest) + (beg) * (item_sz), slice, slice_len * (item_sz));
  
  #endif // MICROPY_INCLUDED_PY_OBJ_H