Blame view

epsilon-master/poincare/src/round.cpp 2.25 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  #include <poincare/round.h>
  #include <poincare/undefined.h>
  #include <poincare/rational.h>
  #include <poincare/power.h>
  
  extern "C" {
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Expression::Type Round::type() const {
    return Type::Round;
  }
  
  Expression * Round::clone() const {
    Round * c = new Round(m_operands, true);
    return c;
  }
  
  Expression * Round::shallowReduce(Context& context, AngleUnit angleUnit) {
    Expression * e = Expression::shallowReduce(context, angleUnit);
    if (e != this) {
      return e;
    }
  #if MATRIX_EXACT_REDUCING
    if (operand(0)->type() == Type::Matrix || operand(1)->type() == Type::Matrix) {
      return replaceWith(new Undefined(), true);
    }
  #endif
    if (operand(0)->type() == Type::Rational && operand(1)->type() == Type::Rational) {
      Rational * r1 = static_cast<Rational *>(editableOperand(0));
      Rational * r2 = static_cast<Rational *>(editableOperand(1));
      if (!r2->denominator().isOne()) {
        return replaceWith(new Undefined(), true);
      }
      const Rational ten(10);
      if (Power::RationalExponentShouldNotBeReduced(&ten, r2)) {
        return this;
      }
      Rational err = Rational::Power(ten, r2->numerator());
      Rational mult = Rational::Multiplication(*r1, err);
      IntegerDivision d = Integer::Division(mult.numerator(), mult.denominator());
      Integer rounding = d.quotient;
      if (Rational::NaturalOrder(Rational(d.remainder, mult.denominator()), Rational(1,2)) >= 0) {
        rounding = Integer::Addition(rounding, Integer(1));
      }
      Rational result = Rational::Multiplication(rounding, Rational::Power(Rational(1,10), r2->numerator()));
      return replaceWith(new Rational(result), true);
    }
    return this; // TODO: implement for rationals!
  }
  
  template<typename T>
  Complex<T> * Round::templatedApproximate(Context& context, AngleUnit angleUnit) const {
    Evaluation<T> * f1Input = operand(0)->privateApproximate(T(), context, angleUnit);
    Evaluation<T> * f2Input = operand(1)->privateApproximate(T(), context, angleUnit);
    T f1 = f1Input->toScalar();
    T f2 = f2Input->toScalar();
    delete f1Input;
    delete f2Input;
    if (std::isnan(f2) || f2 != std::round(f2)) {
      return new Complex<T>(Complex<T>::Undefined());
    }
    T err = std::pow(10, std::floor(f2));
    return new Complex<T>(std::round(f1*err)/err);
  }
  
  }