Blame view

epsilon-master/poincare/src/product.cpp 1.72 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  #include <poincare/product.h>
  #include <poincare/multiplication.h>
  #include "layout/product_layout.h"
  extern "C" {
  #include <assert.h>
  #include <stdlib.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Expression::Type Product::type() const {
    return Type::Product;
  }
  
  Expression * Product::clone() const {
    Product * a = new Product(m_operands, true);
    return a;
  }
  
  const char * Product::name() const {
    return "product";
  }
  
  int Product::emptySequenceValue() const {
    return 1;
  }
  
  ExpressionLayout * Product::createSequenceLayoutWithArgumentLayouts(ExpressionLayout * argumentLayout, ExpressionLayout * subscriptLayout, ExpressionLayout * superscriptLayout) const {
    return new ProductLayout(argumentLayout, subscriptLayout, superscriptLayout, false);
  }
  
  template<typename T>
  Evaluation<T> * Product::templatedApproximateWithNextTerm(Evaluation<T> * a, Evaluation<T> * b) const {
    if (a->type() == Evaluation<T>::Type::Complex && b->type() == Evaluation<T>::Type::Complex) {
      Complex<T> * c = static_cast<Complex<T> *>(a);
      Complex<T> * d = static_cast<Complex<T> *>(b);
      return new Complex<T>((*c)*(*d));
    }
    if (a->type() == Evaluation<T>::Type::Complex) {
      Complex<T> * c = static_cast<Complex<T> *>(a);
      assert(b->type() == Evaluation<T>::Type::MatrixComplex);
      MatrixComplex<T> * m = static_cast<MatrixComplex<T> *>(b);
      return new MatrixComplex<T>(Multiplication::computeOnComplexAndMatrix(*c, *m));
    }
    assert(a->type() == Evaluation<T>::Type::MatrixComplex);
    assert(b->type() == Evaluation<T>::Type::MatrixComplex);
    MatrixComplex<T> * m = static_cast<MatrixComplex<T> *>(a);
    MatrixComplex<T> * n = static_cast<MatrixComplex<T> *>(b);
    return new MatrixComplex<T>(Multiplication::computeOnMatrices<T>(*m, *n));
  }
  
  }