Blame view

epsilon-master/poincare/src/layout/integral_layout.cpp 10.4 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  #include "integral_layout.h"
  #include "char_layout.h"
  #include "horizontal_layout.h"
  #include <poincare/expression_layout_cursor.h>
  #include <string.h>
  #include <assert.h>
  
  namespace Poincare {
  
  const uint8_t topSymbolPixel[IntegralLayout::k_symbolHeight][IntegralLayout::k_symbolWidth] = {
    {0x00, 0x00, 0xFF, 0xFF},
    {0xFF, 0xFF, 0x00, 0xFF},
    {0xFF, 0xFF, 0x00, 0x00},
    {0xFF, 0xFF, 0x00, 0x00},
  };
  
  const uint8_t bottomSymbolPixel[IntegralLayout::k_symbolHeight][IntegralLayout::k_symbolWidth] = {
    {0x00, 0x00, 0xFF, 0xFF},
    {0x00, 0x00, 0xFF, 0xFF},
    {0xFF, 0x00, 0xFF, 0xFF},
    {0xFF, 0xFF, 0x00, 0x00},
  };
  
  ExpressionLayout * IntegralLayout::clone() const {
    IntegralLayout * layout = new IntegralLayout(const_cast<IntegralLayout *>(this)->integrandLayout(), const_cast<IntegralLayout *>(this)->lowerBoundLayout(), const_cast<IntegralLayout *>(this)->upperBoundLayout(), true);
    return layout;
  }
  
  void IntegralLayout::deleteBeforeCursor(ExpressionLayoutCursor * cursor) {
    if (cursor->isEquivalentTo(ExpressionLayoutCursor(integrandLayout(), ExpressionLayoutCursor::Position::Left))) {
      // Case: Left of the integrand.
      // Delete the layout, keep the integrand.
      replaceWithAndMoveCursor(integrandLayout(), true, cursor);
      return;
    }
    ExpressionLayout::deleteBeforeCursor(cursor);
  }
  
  ExpressionLayoutCursor IntegralLayout::cursorLeftOf(ExpressionLayoutCursor cursor, bool * shouldRecomputeLayout) {
    // Case: Left the upper or lower bound. Go Left of the integral.
    if (((upperBoundLayout()
          && cursor.pointedExpressionLayout() == upperBoundLayout())
        || (lowerBoundLayout()
          && cursor.pointedExpressionLayout() == lowerBoundLayout()))
        && cursor.position() == ExpressionLayoutCursor::Position::Left)
    {
      return ExpressionLayoutCursor(this, ExpressionLayoutCursor::Position::Left);
    }
    // Case: Left the integrand. Go Right of the lower bound.
   if (integrandLayout()
       && cursor.pointedExpressionLayout() == integrandLayout()
       && cursor.position() == ExpressionLayoutCursor::Position::Left)
    {
      assert(lowerBoundLayout() != nullptr);
      return ExpressionLayoutCursor(lowerBoundLayout(), ExpressionLayoutCursor::Position::Right);
    }
    assert(cursor.pointedExpressionLayout() == this);
    // Case: Right of the integral. Go to the integrand.
    if (cursor.position() == ExpressionLayoutCursor::Position::Right) {
      assert(integrandLayout() != nullptr);
      return ExpressionLayoutCursor(integrandLayout(), ExpressionLayoutCursor::Position::Right);
    }
    assert(cursor.position() == ExpressionLayoutCursor::Position::Left);
    // Case: Left of the brackets. Ask the parent.
    if (m_parent) {
      return m_parent->cursorLeftOf(cursor, shouldRecomputeLayout);
    }
    return ExpressionLayoutCursor();
  }
  
  ExpressionLayoutCursor IntegralLayout::cursorRightOf(ExpressionLayoutCursor cursor, bool * shouldRecomputeLayout) {
    // Case: Right the upper or lower bound.
    // Go Left of the integrand.
    if (((upperBoundLayout()
          && cursor.pointedExpressionLayout() == upperBoundLayout())
        || (lowerBoundLayout()
          && cursor.pointedExpressionLayout() == lowerBoundLayout()))
        && cursor.position() == ExpressionLayoutCursor::Position::Right)
    {
      assert(integrandLayout() != nullptr);
      return ExpressionLayoutCursor(integrandLayout(), ExpressionLayoutCursor::Position::Left);
    }
    // Case: Right the integrand. Go Right.
   if (integrandLayout()
       && cursor.pointedExpressionLayout() == integrandLayout()
       && cursor.position() == ExpressionLayoutCursor::Position::Right)
    {
      return ExpressionLayoutCursor(this, ExpressionLayoutCursor::Position::Right);
    }
    assert(cursor.pointedExpressionLayout() == this);
    // Case: Left of the integral. Go to the upper bound.
    if (cursor.position() == ExpressionLayoutCursor::Position::Left) {
      assert(upperBoundLayout() != nullptr);
      return ExpressionLayoutCursor(upperBoundLayout(), ExpressionLayoutCursor::Position::Left);
    }
    assert(cursor.position() == ExpressionLayoutCursor::Position::Right);
    // Case: Right. Ask the parent.
    if (m_parent) {
      return m_parent->cursorRightOf(cursor, shouldRecomputeLayout);
    }
    return ExpressionLayoutCursor();
  }
  
  ExpressionLayoutCursor IntegralLayout::cursorAbove(ExpressionLayoutCursor cursor, bool * shouldRecomputeLayout, bool equivalentPositionVisited) {
    // If the cursor is inside the lower bound, move it to the upper bound.
    if (lowerBoundLayout() && cursor.pointedExpressionLayout()->hasAncestor(lowerBoundLayout(), true)) {
      assert(upperBoundLayout() != nullptr);
      return upperBoundLayout()->cursorInDescendantsAbove(cursor, shouldRecomputeLayout);
    }
    // If the cursor is Left of the integrand, move it to the upper bound.
    if (integrandLayout()
        && cursor.isEquivalentTo(ExpressionLayoutCursor(integrandLayout(), ExpressionLayoutCursor::Position::Left)))
    {
      assert(upperBoundLayout() != nullptr);
      return upperBoundLayout()->cursorInDescendantsAbove(cursor, shouldRecomputeLayout);
    }
    return ExpressionLayout::cursorAbove(cursor, shouldRecomputeLayout, equivalentPositionVisited);
  }
  
  ExpressionLayoutCursor IntegralLayout::cursorUnder(ExpressionLayoutCursor cursor, bool * shouldRecomputeLayout, bool equivalentPositionVisited) {
    // If the cursor is inside the upper bound, move it to the lower bound.
    if (upperBoundLayout() && cursor.pointedExpressionLayout()->hasAncestor(upperBoundLayout(), true)) {
      assert(lowerBoundLayout() != nullptr);
      return lowerBoundLayout()->cursorInDescendantsUnder(cursor, shouldRecomputeLayout);
    }
    // If the cursor is Left of the integrand, move it to the lower bound.
    if (integrandLayout()
        && cursor.isEquivalentTo(ExpressionLayoutCursor(integrandLayout(), ExpressionLayoutCursor::Position::Left)))
    {
      assert(lowerBoundLayout() != nullptr);
      return lowerBoundLayout()->cursorInDescendantsUnder(cursor, shouldRecomputeLayout);
    }
    return ExpressionLayout::cursorUnder(cursor, shouldRecomputeLayout, equivalentPositionVisited);
  }
  
  int IntegralLayout::writeTextInBuffer(char * buffer, int bufferSize) const {
    if (bufferSize == 0) {
      return -1;
    }
    buffer[bufferSize-1] = 0;
  
    // Write the operator name
    int numberOfChar = strlcpy(buffer, "int", bufferSize);
    if (numberOfChar >= bufferSize-1) {
      return bufferSize-1;
    }
  
    // Write the opening parenthesis
    buffer[numberOfChar++] = '(';
    if (numberOfChar >= bufferSize-1) {
      return bufferSize-1;
    }
  
    // Write the argument
    numberOfChar += const_cast<IntegralLayout *>(this)->integrandLayout()->writeTextInBuffer(buffer+numberOfChar, bufferSize-numberOfChar);
    if (numberOfChar >= bufferSize-1) { return bufferSize-1; }
  
    // Write the comma
    buffer[numberOfChar++] = ',';
    if (numberOfChar >= bufferSize-1) { return bufferSize-1; }
  
    // Write the lower bound
    numberOfChar += const_cast<IntegralLayout *>(this)->lowerBoundLayout()->writeTextInBuffer(buffer+numberOfChar, bufferSize-numberOfChar);
    if (numberOfChar >= bufferSize-1) { return bufferSize-1; }
  
    // Write the comma
    buffer[numberOfChar++] = ',';
    if (numberOfChar >= bufferSize-1) { return bufferSize-1; }
  
    // Write the upper bound
    numberOfChar += const_cast<IntegralLayout *>(this)->upperBoundLayout()->writeTextInBuffer(buffer+numberOfChar, bufferSize-numberOfChar);
    if (numberOfChar >= bufferSize-1) { return bufferSize-1; }
  
    // Write the closing parenthesis
    buffer[numberOfChar++] = ')';
    buffer[numberOfChar] = 0;
    return numberOfChar;
  }
  
  void IntegralLayout::render(KDContext * ctx, KDPoint p, KDColor expressionColor, KDColor backgroundColor) {
    KDSize integrandSize = integrandLayout()->size();
    KDSize upperBoundSize = upperBoundLayout()->size();
    KDColor workingBuffer[k_symbolWidth*k_symbolHeight];
  
    // Render the integral symbol.
    KDRect topSymbolFrame(p.x() + k_symbolWidth + k_lineThickness, p.y() + upperBoundSize.height() - k_boundHeightMargin,
      k_symbolWidth, k_symbolHeight);
    ctx->blendRectWithMask(topSymbolFrame, expressionColor, (const uint8_t *)topSymbolPixel, (KDColor *)workingBuffer);
    KDRect bottomSymbolFrame(p.x(),
      p.y() + upperBoundSize.height() + 2*k_integrandHeigthMargin + integrandSize.height() + k_boundHeightMargin - k_symbolHeight,
      k_symbolWidth, k_symbolHeight);
    ctx->blendRectWithMask(bottomSymbolFrame, expressionColor, (const uint8_t *)bottomSymbolPixel, (KDColor *)workingBuffer);
    ctx->fillRect(KDRect(p.x() + k_symbolWidth, p.y() + upperBoundSize.height() - k_boundHeightMargin, k_lineThickness,
      2*k_boundHeightMargin+2*k_integrandHeigthMargin+integrandSize.height()), expressionColor);
  
    // Render "dx".
    CharLayout * dummydx = new CharLayout('d');
    HorizontalLayout dummyLayout(integrandLayout()->clone(), dummydx, false);
    KDPoint dxPosition = dummyLayout.positionOfChild(dummydx);
    ctx->drawString("dx", dxPosition.translatedBy(p).translatedBy(positionOfChild(integrandLayout())), dummydx->fontSize(), expressionColor, backgroundColor);
  }
  
  KDSize IntegralLayout::computeSize() {
    KDSize dxSize = HorizontalLayout(new CharLayout('d'), new CharLayout('x'), false).size();
    KDSize integrandSize = integrandLayout()->size();
    KDSize lowerBoundSize = lowerBoundLayout()->size();
    KDSize upperBoundSize = upperBoundLayout()->size();
    return KDSize(
      k_symbolWidth+k_lineThickness+k_boundWidthMargin+max(lowerBoundSize.width(), upperBoundSize.width())+k_integrandWidthMargin+integrandSize.width()+dxSize.width(),
      upperBoundSize.height()+ 2*k_integrandHeigthMargin+max(integrandSize.height(), dxSize.height())+lowerBoundSize.height());
  }
  
  void IntegralLayout::computeBaseline() {
    m_baseline = upperBoundLayout()->size().height() + k_integrandHeigthMargin + integrandLayout()->baseline();
    m_baselined = true;
  }
  
  KDPoint IntegralLayout::positionOfChild(ExpressionLayout * child) {
    KDSize integrandSize = integrandLayout()->size();
    KDSize lowerBoundSize = lowerBoundLayout()->size();
    KDSize upperBoundSize = upperBoundLayout()->size();
    KDCoordinate x = 0;
    KDCoordinate y = 0;
    if (child == lowerBoundLayout()) {
      x = k_symbolWidth+k_lineThickness+k_boundWidthMargin;
      y = upperBoundSize.height()+2*k_integrandHeigthMargin+integrandSize.height();
    } else if (child == upperBoundLayout()) {
      x = k_symbolWidth+k_lineThickness+k_boundWidthMargin;;
      y = 0;
    } else if (child == integrandLayout()) {
      x = k_symbolWidth +k_lineThickness+ k_boundWidthMargin+max(lowerBoundSize.width(), upperBoundSize.width())+k_integrandWidthMargin;
      y = upperBoundSize.height()+k_integrandHeigthMargin;
    } else {
      assert(false);
    }
    return KDPoint(x,y);
  }
  
  }