6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
#include <poincare/factor.h>
#include <poincare/undefined.h>
#include <poincare/arithmetic.h>
#include <poincare/power.h>
#include <poincare/division.h>
#include <poincare/opposite.h>
extern "C" {
#include <stdlib.h>
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type Factor::type() const {
return Type::Factor;
}
Expression * Factor::clone() const {
Factor * b = new Factor(m_operands, true);
return b;
}
Expression * Factor::shallowBeautify(Context& context, AngleUnit angleUnit) {
Expression * op = editableOperand(0);
if (op->type() != Type::Rational) {
return new Undefined();
}
Rational * r = static_cast<Rational *>(op);
if (r->isZero()) {
return replaceWith(r, true);
}
Expression * numeratorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r->numerator(), context, angleUnit);
Expression * result = numeratorDecomp;
if (result->type() == Type::Undefined) {
return replaceWith(result, true);
}
assert(numeratorDecomp->type() == Type::Multiplication);
if (!r->denominator().isOne()) {
Expression * denominatorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r->denominator(), context, angleUnit);
if (denominatorDecomp->type() == Type::Undefined) {
delete result;
return replaceWith(denominatorDecomp, true);
}
assert(denominatorDecomp->type() == Type::Multiplication);
result = new Division(numeratorDecomp, denominatorDecomp, false);
static_cast<Multiplication *>(denominatorDecomp)->squashUnaryHierarchy();
}
if (r->sign() == Sign::Negative) {
result = new Opposite(result, false);
}
replaceWith(result, true);
if (result == numeratorDecomp) {
return static_cast<Multiplication *>(numeratorDecomp)->squashUnaryHierarchy();
}
static_cast<Multiplication *>(numeratorDecomp)->squashUnaryHierarchy();
return result;
}
Expression * Factor::createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context & context, AngleUnit angleUnit) {
assert(!i.isZero());
i.setNegative(false);
Multiplication * m = new Multiplication();
if (i.isOne()) {
m->addOperand(new Rational(i));
return m;
}
Integer factors[Arithmetic::k_maxNumberOfPrimeFactors];
Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors];
Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors);
int index = 0;
if (coefficients[0].isMinusOne()) {
delete m;
return new Undefined();
}
while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) {
Expression * factor = new Rational(factors[index]);
if (!coefficients[index].isOne()) {
Expression * exponent = new Rational(coefficients[index]);
factor = new Power(factor, exponent, false);
}
m->addOperand(factor);
index++;
}
return m;
}
}
|