Blame view

epsilon-master/poincare/src/expression_parser.y 11.8 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  /* This file should be built with Bison 3.0.4. It might work with other Bison
   * version, but those haven't been tested. */
  
  /* When calling the parser, we will provide yyparse with an extra parameter : a
   * backpointer to the resulting expression. */
  %parse-param { Poincare::Expression ** expressionOutput }
  
  %{
  #include <poincare.h>
  /* The lexer manipulates tokens defined by the parser, so we need the following
   * inclusion order. */
  #include "expression_parser.hpp"
  #include "expression_lexer.hpp"
  
  /* Declare our error-handling function. Since we're making a re-entrant parser,
   * it takes a context parameter as its first input. */
  void poincare_expression_yyerror(Poincare::Expression ** expressionOutput, char const *msg);
  
  /* Bison expects to use __builtin_memcpy. We don't want to provide this, but
   * instead we do provide regular memcpy. Let's instruct Bison to use it. */
  #define YYCOPY(To, From, Count) memcpy(To, From, (Count)*sizeof(*(From)))
  
  %}
  
  
  /* All symbols (both terminals and non-terminals) may have a value associated
   * with them. In our case, it's going to be either an Expression (for example,
   * when parsing (a/b) we want to create a new Division), or a string (this will
   * be useful to retrieve the value of Integers for example). */
  %union {
    Poincare::Expression * expression;
    Poincare::Symbol * symbol;
    Poincare::ListData * listData;
    Poincare::MatrixData * matrixData;
    Poincare::StaticHierarchy<0> * function;
    /* Caution: all the const char * are NOT guaranteed to be NULL-terminated!
     * While Flex guarantees that yytext is NULL-terminated when building tokens,
     * it does so by temporarily swapping in a NULL terminated in the input text.
     * Of course that hack has vanished by the time the pointer is fed into Bison.
     * We thus record the length of the char fed into Flex in a structure and give
     * it to the object constructor called by Bison along with the char *. */
    struct {
       char * address;
       int length;
    } string;
    char character;
  }
  
  /* The INTEGER token uses the "string" part of the union to store its value */
  %token <string> DIGITS
  %token <character> SYMBOL
  %token <function> FUNCTION
  %token <expression> UNDEFINED
  %token <expression> EMPTY
  
  /* Operator tokens */
  %token PLUS
  %token MINUS
  %token MULTIPLY
  %token DIVIDE
  %token POW
  %token BANG
  %token LEFT_PARENTHESIS
  %token RIGHT_PARENTHESIS
  %token LEFT_BRACE
  %token RIGHT_BRACE
  %token LEFT_BRACKET
  %token RIGHT_BRACKET
  %token COMMA
  %token UNDERSCORE
  %token DOT
  %token EE
  %token STO
  %token EQUAL
  %token UNDEFINED_SYMBOL
  
  /* Make the operators left associative.
   * This makes 1 - 2 - 5’  be ‘(1 - 2) - 5’ instead of ‘1 - (2 - 5)’.
   * This makes 1 / 2 / 5’  be ‘(1 / 2) / 5’ instead of ‘1 / (2 / 5)’.
   *
   * This also puts the precedence of the operators, here DIVIDE has a bigger
   * precedence than PLUS for example.
   *
   * Note that specifying the precedence of reduces is usually a very bad practice
   * expect in the case of operator precedence and of IF/THE/ELSE structure which
   * are the only two exceptions.
   * If you need to define precedence in order to avoid shift/redice conflicts for
   * other situations your grammar is most likely ambiguous.
   */
  
  /* Note that in bison, precedence of parsing depend on the order they are defined in here, the last
   * one has the highest precedence. */
  
  %nonassoc EQUAL
  %nonassoc STO
  %left PLUS
  %left MINUS
  %left MULTIPLY
  %left DIVIDE
  %left IMPLICIT_MULTIPLY
  %nonassoc UNARY_MINUS
  %right POW
  %left BANG
  %nonassoc LEFT_PARENTHESIS
  %nonassoc RIGHT_PARENTHESIS
  %nonassoc LEFT_BRACKET
  %nonassoc RIGHT_BRACKET
  %nonassoc LEFT_BRACE
  %nonassoc RIGHT_BRACE
  %nonassoc FUNCTION
  %left COMMA
  %nonassoc UNDERSCORE
  %nonassoc DIGITS
  %nonassoc DOT
  %nonassoc EE
  %nonassoc UNDEFINED
  %nonassoc SYMBOL
  %nonassoc EMPTY
  
  /* The "exp" symbol uses the "expression" part of the union. */
  %type <expression> final_exp;
  %type <expression> term;
  %type <expression> bang;
  %type <expression> factor;
  %type <expression> pow;
  %type <expression> exp;
  %type <expression> number;
  %type <symbol> symb;
  %type <listData> lstData;
  /* MATRICES_ARE_DEFINED */
  %type <matrixData> mtxData;
  
  /* During error recovery, some symbols need to be discarded. We need to tell
   * Bison how to get rid of them. Depending on the type of the symbol, it may
   * have some heap-allocated data that need to be discarded. */
  
  %destructor { delete $$; } FUNCTION
  %destructor { delete $$; } UNDEFINED final_exp exp pow factor bang term number EMPTY
  %destructor { delete $$; } lstData
  /* MATRICES_ARE_DEFINED */
  %destructor { delete $$; } mtxData
  %destructor { delete $$; } symb
  
  %%
  
  Root:
    final_exp {
      *expressionOutput = $1;
    }
    ;
  
  lstData: exp { $$ = new Poincare::ListData($1); }
         | lstData COMMA exp { $$ = $1; $$->pushExpression($3); }
         ;
  
  /* MATRICES_ARE_DEFINED */
  mtxData: LEFT_BRACKET lstData RIGHT_BRACKET { $$ = new Poincare::MatrixData($2, false); $2->detachOperands(); delete $2; }
         | mtxData LEFT_BRACKET lstData RIGHT_BRACKET  { if ($3->numberOfOperands() != $1->numberOfColumns()) { delete $1; delete $3; YYERROR; } ; $$ = $1; $$->pushListData($3, false); $3->detachOperands(); delete $3; }
         ;
  
  /* When approximating expressions to double, results are bounded by 1E308 (and
   * 1E-308 for small numbers). We thus accept decimals whose exponents are in
   * {-1000, 1000}. However, we have to compute the exponent first to decide
   * whether to accept the decimal. The exponent of a Decimal is stored as an
   * int32_t. We thus have to throw an error when the exponent computation might
   * overflow. Finally, we escape computation by throwing an error when the length
   * of the exponent digits is above 4 (0.00...-256 times-...01E1256=1E1000 is
   * accepted and 1000-...256times...-0E10000 = 1E10256, 10256 does not overflow
   * an int32_t). */
  number : DIGITS { $$ = new Poincare::Rational(Poincare::Integer($1.address, false)); }
         | DOT DIGITS { $$ = new Poincare::Decimal(Poincare::Decimal::mantissa(nullptr, 0, $2.address, $2.length, false), Poincare::Decimal::exponent(nullptr, 0, $2.address, $2.length, nullptr, 0, false)); }
         | DIGITS DOT DIGITS { $$ = new Poincare::Decimal(Poincare::Decimal::mantissa($1.address, $1.length, $3.address, $3.length, false), Poincare::Decimal::exponent($1.address, $1.length, $3.address, $3.length, nullptr, 0, false)); }
         | DOT DIGITS EE DIGITS { if ($4.length > 4) { YYERROR; }; int exponent = Poincare::Decimal::exponent(nullptr, 0, $2.address, $2.length, $4.address, $4.length, false); if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa(nullptr, 0, $2.address, $2.length, false), exponent); }
         | DIGITS DOT DIGITS EE DIGITS { if ($5.length > 4) { YYERROR; }; int exponent = Poincare::Decimal::exponent($1.address, $1.length, $3.address, $3.length, $5.address, $5.length, false); if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa($1.address, $1.length, $3.address, $3.length, false), exponent); }
         | DIGITS EE DIGITS { if ($3.length > 4) { YYERROR; }; int exponent = Poincare::Decimal::exponent($1.address, $1.length, nullptr, 0, $3.address, $3.length, false); if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa($1.address, $1.length, nullptr, 0, false), exponent); }
         | DOT DIGITS EE MINUS DIGITS { if ($5.length > 4) { YYERROR; }; int exponent = Poincare::Decimal::exponent(nullptr, 0, $2.address, $2.length, $5.address, $5.length, true);  if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa(nullptr, 0, $2.address, $2.length, false), exponent); }
         | DIGITS DOT DIGITS EE MINUS DIGITS { if ($6.length > 4) { YYERROR; }; int exponent = Poincare::Decimal::exponent($1.address, $1.length, $3.address, $3.length, $6.address, $6.length, true); if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa($1.address, $1.length, $3.address, $3.length, false), exponent); }
         | DIGITS EE MINUS DIGITS { if ($4.length > 4) { YYERROR; }; int exponent =  Poincare::Decimal::exponent($1.address, $1.length, nullptr, 0, $4.address, $4.length, true); if (exponent > 1000 || exponent < -1000 ) { YYERROR; }; $$ = new Poincare::Decimal(Poincare::Decimal::mantissa($1.address, $1.length, nullptr, 0, false), exponent); }
         ;
  
  symb   : SYMBOL         { $$ = new Poincare::Symbol($1); }
         ;
  
  term   : EMPTY          { $$ = $1; }
         | symb           { $$ = $1; }
         | UNDEFINED      { $$ = $1; }
         | number         { $$ = $1; }
         | FUNCTION UNDERSCORE LEFT_BRACE lstData RIGHT_BRACE LEFT_PARENTHESIS lstData RIGHT_PARENTHESIS { $$ = $1; int totalNumberOfArguments = $4->numberOfOperands()+$7->numberOfOperands();
  if (!$1->hasValidNumberOfOperands(totalNumberOfArguments)) { delete $1; delete $4; delete $7; YYERROR; };
  Poincare::ListData * arguments = new Poincare::ListData();
  for (int i = 0; i < $7->numberOfOperands(); i++) { arguments->pushExpression($7->operands()[i]); }
  for (int i = 0; i < $4->numberOfOperands(); i++) { arguments->pushExpression($4->operands()[i]); }
  $1->setArgument(arguments, totalNumberOfArguments, false);
  $4->detachOperands(); delete $4; $7->detachOperands(); delete $7; arguments->detachOperands(); delete arguments;}
         | FUNCTION LEFT_PARENTHESIS lstData RIGHT_PARENTHESIS { $$ = $1; if (!$1->hasValidNumberOfOperands($3->numberOfOperands())) { delete $1; delete $3; YYERROR; } ; $1->setArgument($3, $3->numberOfOperands(), false); $3->detachOperands(); delete $3; }
         | FUNCTION LEFT_PARENTHESIS RIGHT_PARENTHESIS { $$ = $1; if (!$1->hasValidNumberOfOperands(0)) { delete $1; YYERROR; } ; }
         | LEFT_PARENTHESIS exp RIGHT_PARENTHESIS     { Poincare::Expression * terms[1] = {$2}; $$ = new Poincare::Parenthesis(terms, false); }
  /* MATRICES_ARE_DEFINED */
         | LEFT_BRACKET mtxData RIGHT_BRACKET { $$ = new Poincare::Matrix($2); delete $2; }
         ;
  
  bang   : term               { $$ = $1; }
         | term BANG          { $$ = new Poincare::Factorial($1, false); }
         ;
  
  factor : bang               { $$ = $1; }
         | bang pow %prec IMPLICIT_MULTIPLY { Poincare::Expression * terms[2] = {$1,$2}; $$ = new Poincare::Multiplication(terms, 2, false);  }
         ;
  
  pow    : factor             { $$ = $1; }
         | bang POW pow       { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Power(terms, false); }
         | bang POW MINUS pow { Poincare::Expression * terms1[1] = {$4}; Poincare::Expression * terms[2] = {$1,new Poincare::Opposite(terms1, false)}; $$ = new Poincare::Power(terms, false); }
         ;
  
  exp    : pow                { $$ = $1; }
         | exp DIVIDE exp     { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Division(terms, false);  }
         | exp MULTIPLY exp   { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Multiplication(terms, 2, false);  }
         | exp MINUS exp      { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Subtraction(terms, false); }
         | MINUS exp %prec UNARY_MINUS { Poincare::Expression * terms[1] = {$2}; $$ = new Poincare::Opposite(terms, false); }
         | exp PLUS exp     { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Addition(terms, 2, false); }
         ;
  
  final_exp : exp             { $$ = $1; }
            | exp STO symb   { if ($3->name() == Poincare::Symbol::SpecialSymbols::Ans) { delete $1; delete $3; YYERROR; } ; Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Store(terms, false); }
            | exp EQUAL exp   { Poincare::Expression * terms[2] = {$1,$3}; $$ = new Poincare::Equal(terms, false); }
            ;
  %%
  
  void poincare_expression_yyerror(Poincare::Expression ** expressionOutput, const char * msg) {
    // Handle the error!
    // TODO: handle explicitely different type of errors (division by 0, missing parenthesis). This should call back the container to display a pop up with a message corresponding to the error?
  }