6663b6c9
adorian
projet complet av...
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
#include <poincare/arc_cosine.h>
#include <poincare/trigonometry.h>
#include <poincare/simplification_engine.h>
extern "C" {
#include <assert.h>
}
#include <cmath>
namespace Poincare {
Expression::Type ArcCosine::type() const {
return Type::ArcCosine;
}
Expression * ArcCosine::clone() const {
ArcCosine * a = new ArcCosine(m_operands, true);
return a;
}
Expression * ArcCosine::shallowReduce(Context& context, AngleUnit angleUnit) {
Expression * e = Expression::shallowReduce(context, angleUnit);
if (e != this) {
return e;
}
#if MATRIX_EXACT_REDUCING
if (operand(0)->type() == Type::Matrix) {
return SimplificationEngine::map(this, context, angleUnit);
}
#endif
return Trigonometry::shallowReduceInverseFunction(this, context, angleUnit);
}
template<typename T>
std::complex<T> ArcCosine::computeOnComplex(const std::complex<T> c, AngleUnit angleUnit) {
std::complex<T> result = std::acos(c);
/* acos has a branch cut on ]-inf, -1[U]1, +inf[: it is then multivalued on
* this cut. We followed the convention chosen by the lib c++ of llvm on
* ]-inf+0i, -1+0i[ (warning: acos takes the other side of the cut values on
* ]-inf-0i, -1-0i[) and choose the values on ]1+0i, +inf+0i[ to comply with
* acos(-x) = Pi - acos(x) and tan(arccos(x)) = sqrt(1-x^2)/x. */
if (c.imag() == 0 && c.real() > 1) {
result.imag(-result.imag()); // other side of the cut
}
result = Trigonometry::RoundToMeaningfulDigits(result);
return Trigonometry::ConvertRadianToAngleUnit(result, angleUnit);
}
}
|