Blame view

epsilon-master/apps/calculation/calculation.cpp 6.9 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
  #include "calculation.h"
  #include "calculation_store.h"
  #include "../shared/poincare_helpers.h"
  #include <string.h>
  #include <cmath>
  
  using namespace Poincare;
  using namespace Shared;
  
  namespace Calculation {
  
  Calculation::Calculation() :
    m_inputText(),
    m_exactOutputText(),
    m_approximateOutputText(),
    m_input(nullptr),
    m_exactOutput(nullptr),
    m_approximateOutput(nullptr),
    m_height(-1),
    m_equalSign(EqualSign::Unknown)
  {
  }
  
  Calculation::~Calculation() {
    if (m_input != nullptr) {
      delete m_input;
      m_input = nullptr;
    }
    if (m_exactOutput != nullptr) {
      delete m_exactOutput;
      m_exactOutput = nullptr;
    }
    if (m_approximateOutput != nullptr) {
      delete m_approximateOutput;
      m_approximateOutput = nullptr;
    }
  }
  
  Calculation& Calculation::operator=(const Calculation& other) {
    const char * otherInputText = other.m_inputText;
    const char * otherExactOutputText = other.m_exactOutputText;
    const char * otherApproximateOutputText = other.m_approximateOutputText;
    reset();
    strlcpy(m_inputText, otherInputText, sizeof(m_inputText));
    strlcpy(m_exactOutputText, otherExactOutputText, sizeof(m_exactOutputText));
    strlcpy(m_approximateOutputText, otherApproximateOutputText, sizeof(m_approximateOutputText));
    return *this;
  }
  
  void Calculation::reset() {
    m_inputText[0] = 0;
    m_exactOutputText[0] = 0;
    m_approximateOutputText[0] = 0;
    tidy();
  }
  
  void Calculation::setContent(const char * c, Context * context, Expression * ansExpression) {
    reset();
    m_input = Expression::parse(c);
    Expression::ReplaceSymbolWithExpression(&m_input, Symbol::SpecialSymbols::Ans, ansExpression);
    /* We do not store directly the text enter by the user because we do not want
     * to keep Ans symbol in the calculation store. */
    PoincareHelpers::WriteTextInBuffer(m_input, m_inputText, sizeof(m_inputText));
    m_exactOutput = PoincareHelpers::ParseAndSimplify(m_inputText, *context);
    PoincareHelpers::WriteTextInBuffer(m_exactOutput, m_exactOutputText, sizeof(m_exactOutputText));
    m_approximateOutput = PoincareHelpers::Approximate<double>(m_exactOutput, *context);
    PoincareHelpers::WriteTextInBuffer(m_approximateOutput, m_approximateOutputText, sizeof(m_approximateOutputText));
  }
  
  KDCoordinate Calculation::height(Context * context) {
    if (m_height < 0) {
      ExpressionLayout * inputLayout = createInputLayout();
      KDCoordinate inputHeight = inputLayout->size().height();
      delete inputLayout;
      Poincare::ExpressionLayout * approximateLayout = createApproximateOutputLayout(context);
      KDCoordinate approximateOutputHeight = approximateLayout->size().height();
      if (shouldOnlyDisplayApproximateOutput(context)) {
        m_height = inputHeight+approximateOutputHeight;
      } else {
        Poincare::ExpressionLayout * exactLayout = createExactOutputLayout(context);
        KDCoordinate exactOutputHeight = exactLayout->size().height();
        KDCoordinate outputHeight = max(exactLayout->baseline(), approximateLayout->baseline()) + max(exactOutputHeight-exactLayout->baseline(), approximateOutputHeight-approximateLayout->baseline());
        delete exactLayout;
        m_height = inputHeight + outputHeight;
      }
      delete approximateLayout;
    }
    return m_height;
  }
  
  const char * Calculation::inputText() {
    return m_inputText;
  }
  
  const char * Calculation::exactOutputText() {
    return m_exactOutputText;
  }
  
  const char * Calculation::approximateOutputText() {
    return m_approximateOutputText;
  }
  
  Expression * Calculation::input() {
    if (m_input == nullptr) {
      m_input = Expression::parse(m_inputText);
    }
    return m_input;
  }
  
  ExpressionLayout * Calculation::createInputLayout() {
    if (input() != nullptr) {
      return input()->createLayout(PrintFloat::Mode::Decimal, PrintFloat::k_numberOfStoredSignificantDigits);
    }
    return nullptr;
  }
  
  bool Calculation::isEmpty() {
    /* To test if a calculation is empty, we need to test either m_inputText or
     * m_exactOutputText or m_approximateOutputText, the only three fields that
     * are not lazy-loaded. We choose m_exactOutputText to consider that a
     * calculation being added is still empty until the end of the method
     * 'setContent'. Indeed, during 'setContent' method, 'ans' evaluation calls
     * the evaluation of the last calculation only if the calculation being
     * filled is not taken into account.*/
    if (strlen(m_approximateOutputText) == 0) {
      return true;
    }
    return false;
  }
  
  void Calculation::tidy() {
    if (m_input != nullptr) {
      delete m_input;
    }
    m_input = nullptr;
    if (m_exactOutput != nullptr) {
      delete m_exactOutput;
    }
    m_exactOutput = nullptr;
    if (m_approximateOutput != nullptr) {
      delete m_approximateOutput;
    }
    m_approximateOutput = nullptr;
    m_height = -1;
    m_equalSign = EqualSign::Unknown;
  }
  
  Expression * Calculation::exactOutput(Context * context) {
    if (m_exactOutput == nullptr) {
      /* Because the angle unit might have changed, we do not simplify again. We
       * thereby avoid turning cos(Pi/4) into sqrt(2)/2 and displaying
       * 'sqrt(2)/2 = 0.999906' (which is totally wrong) instead of
       * 'cos(pi/4) = 0.999906' (which is true in degree). */
      m_exactOutput = Expression::parse(m_exactOutputText);
      if (m_exactOutput == nullptr) {
        m_exactOutput = new Undefined();
      }
    }
    return m_exactOutput;
  }
  
  ExpressionLayout * Calculation::createExactOutputLayout(Context * context) {
    if (exactOutput(context) != nullptr) {
      return PoincareHelpers::CreateLayout(exactOutput(context));
    }
    return nullptr;
  }
  
  Expression * Calculation::approximateOutput(Context * context) {
    if (m_approximateOutput == nullptr) {
      /* To ensure that the expression 'm_output' is a matrix or a complex, we
       * call 'evaluate'. */
      Expression * exp = Expression::parse(m_approximateOutputText);
      if (exp != nullptr) {
        m_approximateOutput = PoincareHelpers::Approximate<double>(exp, *context);
        delete exp;
      } else {
        m_approximateOutput = new Undefined();
      }
    }
    return m_approximateOutput;
  }
  
  ExpressionLayout * Calculation::createApproximateOutputLayout(Context * context) {
    if (approximateOutput(context) != nullptr) {
      return PoincareHelpers::CreateLayout(approximateOutput(context));
    }
    return nullptr;
  }
  
  bool Calculation::shouldOnlyDisplayApproximateOutput(Context * context) {
    if (strcmp(m_exactOutputText, m_approximateOutputText) == 0) {
      return true;
    }
    if (strcmp(m_exactOutputText, "undef") == 0) {
      return true;
    }
    return input()->isApproximate(*context);
  }
  
  Calculation::EqualSign Calculation::exactAndApproximateDisplayedOutputsAreEqual(Poincare::Context * context) {
    if (m_equalSign != EqualSign::Unknown) {
      return m_equalSign;
    }
    m_equalSign = exactOutput(context)->isEqualToItsApproximationLayout(approximateOutput(context), k_printedExpressionSize, Preferences::sharedPreferences()->angleUnit(), Preferences::sharedPreferences()->displayMode(), Preferences::sharedPreferences()->numberOfSignificantDigits(), *context) ? EqualSign::Equal : EqualSign::Approximation;
    return m_equalSign;
  }
  
  }