Blame view

build6/epsilon-master/poincare/src/factor.cpp 2.79 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  #include <poincare/factor.h>
  #include <poincare/undefined.h>
  #include <poincare/arithmetic.h>
  #include <poincare/power.h>
  #include <poincare/division.h>
  #include <poincare/opposite.h>
  
  extern "C" {
  #include <stdlib.h>
  #include <assert.h>
  }
  #include <cmath>
  
  namespace Poincare {
  
  Expression::Type Factor::type() const {
    return Type::Factor;
  }
  
  Expression * Factor::clone() const {
    Factor * b = new Factor(m_operands, true);
    return b;
  }
  
  Expression * Factor::shallowBeautify(Context& context, AngleUnit angleUnit) {
    Expression * op = editableOperand(0);
    if (op->type() != Type::Rational) {
      return new Undefined();
    }
    Rational * r = static_cast<Rational *>(op);
    if (r->isZero()) {
      return replaceWith(r, true);
    }
    Expression * numeratorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r->numerator(), context, angleUnit);
    Expression * result = numeratorDecomp;
    if (result->type() == Type::Undefined) {
      return replaceWith(result, true);
    }
    assert(numeratorDecomp->type() == Type::Multiplication);
    if (!r->denominator().isOne()) {
      Expression * denominatorDecomp = createMultiplicationOfIntegerPrimeDecomposition(r->denominator(), context, angleUnit);
      if (denominatorDecomp->type() == Type::Undefined) {
        delete result;
        return replaceWith(denominatorDecomp, true);
      }
      assert(denominatorDecomp->type() == Type::Multiplication);
      result = new Division(numeratorDecomp, denominatorDecomp, false);
      static_cast<Multiplication *>(denominatorDecomp)->squashUnaryHierarchy();
    }
    if (r->sign() == Sign::Negative) {
      result = new Opposite(result, false);
    }
    replaceWith(result, true);
    if (result == numeratorDecomp) {
      return static_cast<Multiplication *>(numeratorDecomp)->squashUnaryHierarchy();
    }
    static_cast<Multiplication *>(numeratorDecomp)->squashUnaryHierarchy();
    return result;
  }
  
  Expression * Factor::createMultiplicationOfIntegerPrimeDecomposition(Integer i, Context & context, AngleUnit angleUnit) {
    assert(!i.isZero());
    i.setNegative(false);
    Multiplication * m = new Multiplication();
    if (i.isOne()) {
      m->addOperand(new Rational(i));
      return m;
    }
    Integer factors[Arithmetic::k_maxNumberOfPrimeFactors];
    Integer coefficients[Arithmetic::k_maxNumberOfPrimeFactors];
    Arithmetic::PrimeFactorization(&i, factors, coefficients, Arithmetic::k_maxNumberOfPrimeFactors);
    int index = 0;
    if (coefficients[0].isMinusOne()) {
      delete m;
      return new Undefined();
    }
    while (!coefficients[index].isZero() && index < Arithmetic::k_maxNumberOfPrimeFactors) {
      Expression * factor = new Rational(factors[index]);
      if (!coefficients[index].isOne()) {
        Expression * exponent = new Rational(coefficients[index]);
        factor = new Power(factor, exponent, false);
      }
      m->addOperand(factor);
      index++;
    }
    return m;
  }
  
  }