Blame view

build6/epsilon-master/apps/regression/model/power_model.cpp 2.16 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  #include "power_model.h"
  #include "../store.h"
  #include <math.h>
  #include <assert.h>
  #include "../../poincare/include/poincare_layouts.h"
  
  using namespace Poincare;
  
  namespace Regression {
  
  ExpressionLayout * PowerModel::layout() {
    static ExpressionLayout * layout = nullptr;
    if (layout == nullptr) {
      const ExpressionLayout * layoutChildren[] = {
        new CharLayout('a', KDText::FontSize::Small),
        new CharLayout(Ion::Charset::MiddleDot, KDText::FontSize::Small),
        new CharLayout('X', KDText::FontSize::Small),
        new VerticalOffsetLayout(
            new CharLayout('b', KDText::FontSize::Small),
            VerticalOffsetLayout::Type::Superscript,
            false),
        };
      layout = new HorizontalLayout(layoutChildren, 4, false);
    }
    return layout;
  }
  
  double PowerModel::evaluate(double * modelCoefficients, double x) const {
    double a = modelCoefficients[0];
    double b = modelCoefficients[1];
    return a*pow(x,b);
  }
  
  double PowerModel::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) {
    double a = modelCoefficients[0];
    double b = modelCoefficients[1];
    if (a == 0 || b == 0|| y/a <= 0) {
      return NAN;
    }
    return exp(log(y/a)/b);
  }
  
  double PowerModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const {
    double a = modelCoefficients[0];
    double b = modelCoefficients[1];
    if (derivateCoefficientIndex == 0) {
      // Derivate: pow(x,b)
      return pow(x,b);
    }
    if (derivateCoefficientIndex == 1) {
      assert(x >= 0);
      /* We assume all xi are positive.
       * For x = 0, a*pow(x,b) = 0, the partial derivate along b is 0
       * For x > 0, a*pow(x,b) = a*exp(b*ln(x)), the partial derivate along b is
       *   ln(x)*a*pow(x,b) */
      return x == 0 ? 0 : log(x)*a*pow(x, b);
    }
    assert(false);
    return 0.0;
  }
  
  bool PowerModel::dataSuitableForFit(Store * store, int series) const {
    if (!Model::dataSuitableForFit(store, series)) {
      return false;
    }
    int numberOfPairs = store->numberOfPairsOfSeries(series);
    for (int j = 0; j < numberOfPairs; j++) {
      if (store->get(series, 0, j) < 0) {
        return false;
      }
    }
    return true;
  }
  
  
  }