Blame view

build4/epsilon-master/python/src/py/gc.c 32.7 KB
6663b6c9   adorian   projet complet av...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
  /*
   * This file is part of the MicroPython project, http://micropython.org/
   *
   * The MIT License (MIT)
   *
   * Copyright (c) 2013, 2014 Damien P. George
   *
   * Permission is hereby granted, free of charge, to any person obtaining a copy
   * of this software and associated documentation files (the "Software"), to deal
   * in the Software without restriction, including without limitation the rights
   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
   * copies of the Software, and to permit persons to whom the Software is
   * furnished to do so, subject to the following conditions:
   *
   * The above copyright notice and this permission notice shall be included in
   * all copies or substantial portions of the Software.
   *
   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
   * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
   * THE SOFTWARE.
   */
  
  #include <assert.h>
  #include <stdio.h>
  #include <string.h>
  
  #include "py/gc.h"
  #include "py/runtime.h"
  
  #if MICROPY_ENABLE_GC
  
  #if MICROPY_DEBUG_VERBOSE // print debugging info
  #define DEBUG_PRINT (1)
  #define DEBUG_printf DEBUG_printf
  #else // don't print debugging info
  #define DEBUG_PRINT (0)
  #define DEBUG_printf(...) (void)0
  #endif
  
  // make this 1 to dump the heap each time it changes
  #define EXTENSIVE_HEAP_PROFILING (0)
  
  // make this 1 to zero out swept memory to more eagerly
  // detect untraced object still in use
  #define CLEAR_ON_SWEEP (0)
  
  #define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / BYTES_PER_WORD)
  #define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK)
  
  // ATB = allocation table byte
  // 0b00 = FREE -- free block
  // 0b01 = HEAD -- head of a chain of blocks
  // 0b10 = TAIL -- in the tail of a chain of blocks
  // 0b11 = MARK -- marked head block
  
  #define AT_FREE (0)
  #define AT_HEAD (1)
  #define AT_TAIL (2)
  #define AT_MARK (3)
  
  #define BLOCKS_PER_ATB (4)
  #define ATB_MASK_0 (0x03)
  #define ATB_MASK_1 (0x0c)
  #define ATB_MASK_2 (0x30)
  #define ATB_MASK_3 (0xc0)
  
  #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0)
  #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0)
  #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0)
  #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0)
  
  #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
  #define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
  #define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
  #define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
  #define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
  #define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
  #define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)
  
  #define BLOCK_FROM_PTR(ptr) (((byte*)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
  #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
  #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)
  
  #if MICROPY_ENABLE_FINALISER
  // FTB = finaliser table byte
  // if set, then the corresponding block may have a finaliser
  
  #define BLOCKS_PER_FTB (8)
  
  #define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
  #define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
  #define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
  #endif
  
  #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
  #define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
  #define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
  #else
  #define GC_ENTER()
  #define GC_EXIT()
  #endif
  
  // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
  void gc_init(void *start, void *end) {
      // align end pointer on block boundary
      end = (void*)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
      DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start);
  
      // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
      // T = A + F + P
      //     F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
      //     P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
      // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
      size_t total_byte_len = (byte*)end - (byte*)start;
  #if MICROPY_ENABLE_FINALISER
      MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
  #else
      MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
  #endif
  
      MP_STATE_MEM(gc_alloc_table_start) = (byte*)start;
  
  #if MICROPY_ENABLE_FINALISER
      size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
      MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len);
  #endif
  
      size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
      MP_STATE_MEM(gc_pool_start) = (byte*)end - gc_pool_block_len * BYTES_PER_BLOCK;
      MP_STATE_MEM(gc_pool_end) = end;
  
  #if MICROPY_ENABLE_FINALISER
      assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
  #endif
  
      // clear ATBs
      memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len));
  
  #if MICROPY_ENABLE_FINALISER
      // clear FTBs
      memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
  #endif
  
      // set last free ATB index to start of heap
      MP_STATE_MEM(gc_last_free_atb_index) = 0;
  
      // unlock the GC
      MP_STATE_MEM(gc_lock_depth) = 0;
  
      // allow auto collection
      MP_STATE_MEM(gc_auto_collect_enabled) = 1;
  
      #if MICROPY_GC_ALLOC_THRESHOLD
      // by default, maxuint for gc threshold, effectively turning gc-by-threshold off
      MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
      MP_STATE_MEM(gc_alloc_amount) = 0;
      #endif
  
      #if MICROPY_PY_THREAD
      mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
      #endif
  
      DEBUG_printf("GC layout:\n");
      DEBUG_printf("  alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
  #if MICROPY_ENABLE_FINALISER
      DEBUG_printf("  finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
  #endif
      DEBUG_printf("  pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
  }
  
  void gc_lock(void) {
      GC_ENTER();
      MP_STATE_MEM(gc_lock_depth)++;
      GC_EXIT();
  }
  
  void gc_unlock(void) {
      GC_ENTER();
      MP_STATE_MEM(gc_lock_depth)--;
      GC_EXIT();
  }
  
  bool gc_is_locked(void) {
      return MP_STATE_MEM(gc_lock_depth) != 0;
  }
  
  // ptr should be of type void*
  #define VERIFY_PTR(ptr) ( \
          ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0      /* must be aligned on a block */ \
          && ptr >= (void*)MP_STATE_MEM(gc_pool_start)     /* must be above start of pool */ \
          && ptr < (void*)MP_STATE_MEM(gc_pool_end)        /* must be below end of pool */ \
      )
  
  #ifndef TRACE_MARK
  #if DEBUG_PRINT
  #define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr)
  #else
  #define TRACE_MARK(block, ptr)
  #endif
  #endif
  
  // Take the given block as the topmost block on the stack. Check all it's
  // children: mark the unmarked child blocks and put those newly marked
  // blocks on the stack. When all children have been checked, pop off the
  // topmost block on the stack and repeat with that one.
  STATIC void gc_mark_subtree(size_t block) {
      // Start with the block passed in the argument.
      size_t sp = 0;
      for (;;) {
          // work out number of consecutive blocks in the chain starting with this one
          size_t n_blocks = 0;
          do {
              n_blocks += 1;
          } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
  
          // check this block's children
          void **ptrs = (void**)PTR_FROM_BLOCK(block);
          for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void*); i > 0; i--, ptrs++) {
              void *ptr = *ptrs;
              if (VERIFY_PTR(ptr)) {
                  // Mark and push this pointer
                  size_t childblock = BLOCK_FROM_PTR(ptr);
                  if (ATB_GET_KIND(childblock) == AT_HEAD) {
                      // an unmarked head, mark it, and push it on gc stack
                      TRACE_MARK(childblock, ptr);
                      ATB_HEAD_TO_MARK(childblock);
                      if (sp < MICROPY_ALLOC_GC_STACK_SIZE) {
                          MP_STATE_MEM(gc_stack)[sp++] = childblock;
                      } else {
                          MP_STATE_MEM(gc_stack_overflow) = 1;
                      }
                  }
              }
          }
  
          // Are there any blocks on the stack?
          if (sp == 0) {
              break; // No, stack is empty, we're done.
          }
  
          // pop the next block off the stack
          block = MP_STATE_MEM(gc_stack)[--sp];
      }
  }
  
  STATIC void gc_deal_with_stack_overflow(void) {
      while (MP_STATE_MEM(gc_stack_overflow)) {
          MP_STATE_MEM(gc_stack_overflow) = 0;
  
          // scan entire memory looking for blocks which have been marked but not their children
          for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
              // trace (again) if mark bit set
              if (ATB_GET_KIND(block) == AT_MARK) {
                  gc_mark_subtree(block);
              }
          }
      }
  }
  
  STATIC void gc_sweep(void) {
      #if MICROPY_PY_GC_COLLECT_RETVAL
      MP_STATE_MEM(gc_collected) = 0;
      #endif
      // free unmarked heads and their tails
      int free_tail = 0;
      for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
          switch (ATB_GET_KIND(block)) {
              case AT_HEAD:
  #if MICROPY_ENABLE_FINALISER
                  if (FTB_GET(block)) {
                      mp_obj_base_t *obj = (mp_obj_base_t*)PTR_FROM_BLOCK(block);
                      if (obj->type != NULL) {
                          // if the object has a type then see if it has a __del__ method
                          mp_obj_t dest[2];
                          mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
                          if (dest[0] != MP_OBJ_NULL) {
                              // load_method returned a method, execute it in a protected environment
                              #if MICROPY_ENABLE_SCHEDULER
                              mp_sched_lock();
                              #endif
                              mp_call_function_1_protected(dest[0], dest[1]);
                              #if MICROPY_ENABLE_SCHEDULER
                              mp_sched_unlock();
                              #endif
                          }
                      }
                      // clear finaliser flag
                      FTB_CLEAR(block);
                  }
  #endif
                  free_tail = 1;
                  DEBUG_printf("gc_sweep(%p)\n", PTR_FROM_BLOCK(block));
                  #if MICROPY_PY_GC_COLLECT_RETVAL
                  MP_STATE_MEM(gc_collected)++;
                  #endif
                  // fall through to free the head
  
              case AT_TAIL:
                  if (free_tail) {
                      ATB_ANY_TO_FREE(block);
                      #if CLEAR_ON_SWEEP
                      memset((void*)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK);
                      #endif
                  }
                  break;
  
              case AT_MARK:
                  ATB_MARK_TO_HEAD(block);
                  free_tail = 0;
                  break;
          }
      }
  }
  
  void gc_collect_start(void) {
      GC_ENTER();
      MP_STATE_MEM(gc_lock_depth)++;
      #if MICROPY_GC_ALLOC_THRESHOLD
      MP_STATE_MEM(gc_alloc_amount) = 0;
      #endif
      MP_STATE_MEM(gc_stack_overflow) = 0;
  
      // Trace root pointers.  This relies on the root pointers being organised
      // correctly in the mp_state_ctx structure.  We scan nlr_top, dict_locals,
      // dict_globals, then the root pointer section of mp_state_vm.
      void **ptrs = (void**)(void*)&mp_state_ctx;
      gc_collect_root(ptrs, offsetof(mp_state_ctx_t, vm.qstr_last_chunk) / sizeof(void*));
  
      #if MICROPY_ENABLE_PYSTACK
      // Trace root pointers from the Python stack.
      ptrs = (void**)(void*)MP_STATE_THREAD(pystack_start);
      gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void*));
      #endif
  }
  
  void gc_collect_root(void **ptrs, size_t len) {
      for (size_t i = 0; i < len; i++) {
          void *ptr = ptrs[i];
          if (VERIFY_PTR(ptr)) {
              size_t block = BLOCK_FROM_PTR(ptr);
              if (ATB_GET_KIND(block) == AT_HEAD) {
                  // An unmarked head: mark it, and mark all its children
                  TRACE_MARK(block, ptr);
                  ATB_HEAD_TO_MARK(block);
                  gc_mark_subtree(block);
              }
          }
      }
  }
  
  void gc_collect_end(void) {
      gc_deal_with_stack_overflow();
      gc_sweep();
      MP_STATE_MEM(gc_last_free_atb_index) = 0;
      MP_STATE_MEM(gc_lock_depth)--;
      GC_EXIT();
  }
  
  void gc_info(gc_info_t *info) {
      GC_ENTER();
      info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
      info->used = 0;
      info->free = 0;
      info->max_free = 0;
      info->num_1block = 0;
      info->num_2block = 0;
      info->max_block = 0;
      bool finish = false;
      for (size_t block = 0, len = 0, len_free = 0; !finish;) {
          size_t kind = ATB_GET_KIND(block);
          switch (kind) {
              case AT_FREE:
                  info->free += 1;
                  len_free += 1;
                  len = 0;
                  break;
  
              case AT_HEAD:
                  info->used += 1;
                  len = 1;
                  break;
  
              case AT_TAIL:
                  info->used += 1;
                  len += 1;
                  break;
  
              case AT_MARK:
                  // shouldn't happen
                  break;
          }
  
          block++;
          finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
          // Get next block type if possible
          if (!finish) {
              kind = ATB_GET_KIND(block);
          }
  
          if (finish || kind == AT_FREE || kind == AT_HEAD) {
              if (len == 1) {
                  info->num_1block += 1;
              } else if (len == 2) {
                  info->num_2block += 1;
              }
              if (len > info->max_block) {
                  info->max_block = len;
              }
              if (finish || kind == AT_HEAD) {
                  if (len_free > info->max_free) {
                      info->max_free = len_free;
                  }
                  len_free = 0;
              }
          }
      }
  
      info->used *= BYTES_PER_BLOCK;
      info->free *= BYTES_PER_BLOCK;
      GC_EXIT();
  }
  
  void *gc_alloc(size_t n_bytes, bool has_finaliser) {
      size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
      DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);
  
      // check for 0 allocation
      if (n_blocks == 0) {
          return NULL;
      }
  
      GC_ENTER();
  
      // check if GC is locked
      if (MP_STATE_MEM(gc_lock_depth) > 0) {
          GC_EXIT();
          return NULL;
      }
  
      size_t i;
      size_t end_block;
      size_t start_block;
      size_t n_free = 0;
      int collected = !MP_STATE_MEM(gc_auto_collect_enabled);
  
      #if MICROPY_GC_ALLOC_THRESHOLD
      if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
          GC_EXIT();
          gc_collect();
          GC_ENTER();
      }
      #endif
  
      for (;;) {
  
          // look for a run of n_blocks available blocks
          for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) {
              byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
              if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; }
              if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; }
              if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; }
              if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; }
          }
  
          GC_EXIT();
          // nothing found!
          if (collected) {
              return NULL;
          }
          DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
          gc_collect();
          collected = 1;
          GC_ENTER();
      }
  
      // found, ending at block i inclusive
  found:
      // get starting and end blocks, both inclusive
      end_block = i;
      start_block = i - n_free + 1;
  
      // Set last free ATB index to block after last block we found, for start of
      // next scan.  To reduce fragmentation, we only do this if we were looking
      // for a single free block, which guarantees that there are no free blocks
      // before this one.  Also, whenever we free or shink a block we must check
      // if this index needs adjusting (see gc_realloc and gc_free).
      if (n_free == 1) {
          MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB;
      }
  
      // mark first block as used head
      ATB_FREE_TO_HEAD(start_block);
  
      // mark rest of blocks as used tail
      // TODO for a run of many blocks can make this more efficient
      for (size_t bl = start_block + 1; bl <= end_block; bl++) {
          ATB_FREE_TO_TAIL(bl);
      }
  
      // get pointer to first block
      // we must create this pointer before unlocking the GC so a collection can find it
      void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
      DEBUG_printf("gc_alloc(%p)\n", ret_ptr);
  
      #if MICROPY_GC_ALLOC_THRESHOLD
      MP_STATE_MEM(gc_alloc_amount) += n_blocks;
      #endif
  
      GC_EXIT();
  
      #if MICROPY_GC_CONSERVATIVE_CLEAR
      // be conservative and zero out all the newly allocated blocks
      memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
      #else
      // zero out the additional bytes of the newly allocated blocks
      // This is needed because the blocks may have previously held pointers
      // to the heap and will not be set to something else if the caller
      // doesn't actually use the entire block.  As such they will continue
      // to point to the heap and may prevent other blocks from being reclaimed.
      memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
      #endif
  
      #if MICROPY_ENABLE_FINALISER
      if (has_finaliser) {
          // clear type pointer in case it is never set
          ((mp_obj_base_t*)ret_ptr)->type = NULL;
          // set mp_obj flag only if it has a finaliser
          GC_ENTER();
          FTB_SET(start_block);
          GC_EXIT();
      }
      #else
      (void)has_finaliser;
      #endif
  
      #if EXTENSIVE_HEAP_PROFILING
      gc_dump_alloc_table();
      #endif
  
      return ret_ptr;
  }
  
  /*
  void *gc_alloc(mp_uint_t n_bytes) {
      return _gc_alloc(n_bytes, false);
  }
  
  void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
      return _gc_alloc(n_bytes, true);
  }
  */
  
  // force the freeing of a piece of memory
  // TODO: freeing here does not call finaliser
  void gc_free(void *ptr) {
      GC_ENTER();
      if (MP_STATE_MEM(gc_lock_depth) > 0) {
          // TODO how to deal with this error?
          GC_EXIT();
          return;
      }
  
      DEBUG_printf("gc_free(%p)\n", ptr);
  
      if (ptr == NULL) {
          GC_EXIT();
      } else {
          // get the GC block number corresponding to this pointer
          assert(VERIFY_PTR(ptr));
          size_t block = BLOCK_FROM_PTR(ptr);
          assert(ATB_GET_KIND(block) == AT_HEAD);
  
          #if MICROPY_ENABLE_FINALISER
          FTB_CLEAR(block);
          #endif
  
          // set the last_free pointer to this block if it's earlier in the heap
          if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
              MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB;
          }
  
          // free head and all of its tail blocks
          do {
              ATB_ANY_TO_FREE(block);
              block += 1;
          } while (ATB_GET_KIND(block) == AT_TAIL);
  
          GC_EXIT();
  
          #if EXTENSIVE_HEAP_PROFILING
          gc_dump_alloc_table();
          #endif
      }
  }
  
  size_t gc_nbytes(const void *ptr) {
      GC_ENTER();
      if (VERIFY_PTR(ptr)) {
          size_t block = BLOCK_FROM_PTR(ptr);
          if (ATB_GET_KIND(block) == AT_HEAD) {
              // work out number of consecutive blocks in the chain starting with this on
              size_t n_blocks = 0;
              do {
                  n_blocks += 1;
              } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
              GC_EXIT();
              return n_blocks * BYTES_PER_BLOCK;
          }
      }
  
      // invalid pointer
      GC_EXIT();
      return 0;
  }
  
  #if 0
  // old, simple realloc that didn't expand memory in place
  void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
      mp_uint_t n_existing = gc_nbytes(ptr);
      if (n_bytes <= n_existing) {
          return ptr;
      } else {
          bool has_finaliser;
          if (ptr == NULL) {
              has_finaliser = false;
          } else {
  #if MICROPY_ENABLE_FINALISER
              has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
  #else
              has_finaliser = false;
  #endif
          }
          void *ptr2 = gc_alloc(n_bytes, has_finaliser);
          if (ptr2 == NULL) {
              return ptr2;
          }
          memcpy(ptr2, ptr, n_existing);
          gc_free(ptr);
          return ptr2;
      }
  }
  
  #else // Alternative gc_realloc impl
  
  void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
      // check for pure allocation
      if (ptr_in == NULL) {
          return gc_alloc(n_bytes, false);
      }
  
      // check for pure free
      if (n_bytes == 0) {
          gc_free(ptr_in);
          return NULL;
      }
  
      void *ptr = ptr_in;
  
      GC_ENTER();
  
      if (MP_STATE_MEM(gc_lock_depth) > 0) {
          GC_EXIT();
          return NULL;
      }
  
      // get the GC block number corresponding to this pointer
      assert(VERIFY_PTR(ptr));
      size_t block = BLOCK_FROM_PTR(ptr);
      assert(ATB_GET_KIND(block) == AT_HEAD);
  
      // compute number of new blocks that are requested
      size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;
  
      // Get the total number of consecutive blocks that are already allocated to
      // this chunk of memory, and then count the number of free blocks following
      // it.  Stop if we reach the end of the heap, or if we find enough extra
      // free blocks to satisfy the realloc.  Note that we need to compute the
      // total size of the existing memory chunk so we can correctly and
      // efficiently shrink it (see below for shrinking code).
      size_t n_free   = 0;
      size_t n_blocks = 1; // counting HEAD block
      size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
      for (size_t bl = block + n_blocks; bl < max_block; bl++) {
          byte block_type = ATB_GET_KIND(bl);
          if (block_type == AT_TAIL) {
              n_blocks++;
              continue;
          }
          if (block_type == AT_FREE) {
              n_free++;
              if (n_blocks + n_free >= new_blocks) {
                  // stop as soon as we find enough blocks for n_bytes
                  break;
              }
              continue;
          }
          break;
      }
  
      // return original ptr if it already has the requested number of blocks
      if (new_blocks == n_blocks) {
          GC_EXIT();
          return ptr_in;
      }
  
      // check if we can shrink the allocated area
      if (new_blocks < n_blocks) {
          // free unneeded tail blocks
          for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
              ATB_ANY_TO_FREE(bl);
          }
  
          // set the last_free pointer to end of this block if it's earlier in the heap
          if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) {
              MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB;
          }
  
          GC_EXIT();
  
          #if EXTENSIVE_HEAP_PROFILING
          gc_dump_alloc_table();
          #endif
  
          return ptr_in;
      }
  
      // check if we can expand in place
      if (new_blocks <= n_blocks + n_free) {
          // mark few more blocks as used tail
          for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
              assert(ATB_GET_KIND(bl) == AT_FREE);
              ATB_FREE_TO_TAIL(bl);
          }
  
          GC_EXIT();
  
          #if MICROPY_GC_CONSERVATIVE_CLEAR
          // be conservative and zero out all the newly allocated blocks
          memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
          #else
          // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
          memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
          #endif
  
          #if EXTENSIVE_HEAP_PROFILING
          gc_dump_alloc_table();
          #endif
  
          return ptr_in;
      }
  
      #if MICROPY_ENABLE_FINALISER
      bool ftb_state = FTB_GET(block);
      #else
      bool ftb_state = false;
      #endif
  
      GC_EXIT();
  
      if (!allow_move) {
          // not allowed to move memory block so return failure
          return NULL;
      }
  
      // can't resize inplace; try to find a new contiguous chain
      void *ptr_out = gc_alloc(n_bytes, ftb_state);
  
      // check that the alloc succeeded
      if (ptr_out == NULL) {
          return NULL;
      }
  
      DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
      memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
      gc_free(ptr_in);
      return ptr_out;
  }
  #endif // Alternative gc_realloc impl
  
  void gc_dump_info(void) {
      gc_info_t info;
      gc_info(&info);
      mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
          (uint)info.total, (uint)info.used, (uint)info.free);
      mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
             (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
  }
  
  void gc_dump_alloc_table(void) {
      GC_ENTER();
      static const size_t DUMP_BYTES_PER_LINE = 64;
      #if !EXTENSIVE_HEAP_PROFILING
      // When comparing heap output we don't want to print the starting
      // pointer of the heap because it changes from run to run.
      mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
      #endif
      for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
          if (bl % DUMP_BYTES_PER_LINE == 0) {
              // a new line of blocks
              {
                  // check if this line contains only free blocks
                  size_t bl2 = bl;
                  while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
                      bl2++;
                  }
                  if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
                      // there are at least 2 lines containing only free blocks, so abbreviate their printing
                      mp_printf(&mp_plat_print, "\n       (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
                      bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
                      if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
                          // got to end of heap
                          break;
                      }
                  }
              }
              // print header for new line of blocks
              // (the cast to uint32_t is for 16-bit ports)
              //mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
              mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
          }
          int c = ' ';
          switch (ATB_GET_KIND(bl)) {
              case AT_FREE: c = '.'; break;
              /* this prints out if the object is reachable from BSS or STACK (for unix only)
              case AT_HEAD: {
                  c = 'h';
                  void **ptrs = (void**)(void*)&mp_state_ctx;
                  mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
                  for (mp_uint_t i = 0; i < len; i++) {
                      mp_uint_t ptr = (mp_uint_t)ptrs[i];
                      if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                          c = 'B';
                          break;
                      }
                  }
                  if (c == 'h') {
                      ptrs = (void**)&c;
                      len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
                      for (mp_uint_t i = 0; i < len; i++) {
                          mp_uint_t ptr = (mp_uint_t)ptrs[i];
                          if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                              c = 'S';
                              break;
                          }
                      }
                  }
                  break;
              }
              */
              /* this prints the uPy object type of the head block */
              case AT_HEAD: {
                  void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
                  if (*ptr == &mp_type_tuple) { c = 'T'; }
                  else if (*ptr == &mp_type_list) { c = 'L'; }
                  else if (*ptr == &mp_type_dict) { c = 'D'; }
                  else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; }
                  #if MICROPY_PY_BUILTINS_BYTEARRAY
                  else if (*ptr == &mp_type_bytearray) { c = 'A'; }
                  #endif
                  #if MICROPY_PY_ARRAY
                  else if (*ptr == &mp_type_array) { c = 'A'; }
                  #endif
                  #if MICROPY_PY_BUILTINS_FLOAT
                  else if (*ptr == &mp_type_float) { c = 'F'; }
                  #endif
                  else if (*ptr == &mp_type_fun_bc) { c = 'B'; }
                  else if (*ptr == &mp_type_module) { c = 'M'; }
                  else {
                      c = 'h';
                      #if 0
                      // This code prints "Q" for qstr-pool data, and "q" for qstr-str
                      // data.  It can be useful to see how qstrs are being allocated,
                      // but is disabled by default because it is very slow.
                      for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
                          if ((qstr_pool_t*)ptr == pool) {
                              c = 'Q';
                              break;
                          }
                          for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
                              if ((const byte*)ptr == *q) {
                                  c = 'q';
                                  break;
                              }
                          }
                      }
                      #endif
                  }
                  break;
              }
              case AT_TAIL: c = '='; break;
              case AT_MARK: c = 'm'; break;
          }
          mp_printf(&mp_plat_print, "%c", c);
      }
      mp_print_str(&mp_plat_print, "\n");
      GC_EXIT();
  }
  
  #if DEBUG_PRINT
  void gc_test(void) {
      mp_uint_t len = 500;
      mp_uint_t *heap = malloc(len);
      gc_init(heap, heap + len / sizeof(mp_uint_t));
      void *ptrs[100];
      {
          mp_uint_t **p = gc_alloc(16, false);
          p[0] = gc_alloc(64, false);
          p[1] = gc_alloc(1, false);
          p[2] = gc_alloc(1, false);
          p[3] = gc_alloc(1, false);
          mp_uint_t ***p2 = gc_alloc(16, false);
          p2[0] = p;
          p2[1] = p;
          ptrs[0] = p2;
      }
      for (int i = 0; i < 25; i+=2) {
          mp_uint_t *p = gc_alloc(i, false);
          printf("p=%p\n", p);
          if (i & 3) {
              //ptrs[i] = p;
          }
      }
  
      printf("Before GC:\n");
      gc_dump_alloc_table();
      printf("Starting GC...\n");
      gc_collect_start();
      gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*));
      gc_collect_end();
      printf("After GC:\n");
      gc_dump_alloc_table();
  }
  #endif
  
  #endif // MICROPY_ENABLE_GC